
Universität Bremen
Fachbereich Physik, Elektro- und Informationstechnik
Institut für Mikrosensoren, -Aktoren Und -Systeme (IMSAS)

Master Thesis

Sub-Gigahertz Wireless Sensors For Monitoring Of Food Transportation

Submitted by

Faisal Ali Khan

1st Supervisor: Prof. Dr.-Ing. Walter Lang

2nd Supervisor: Dr.-Ing. Reiner Jedermann

Date : April 15, 2015

Statement

I hereby certify that I have my Master Thesis be justified by me for part of a group project -
have made without assistance, and that I have no other than the stated sources and aids.

All sites that are taken literally or in spirit from publications, I have been identified as such..

The Thesis Report may not be changed after submission.

Bremen, April 15, 2015
(Name)

ii

Abstract

This thesis presents a work on "Sub-Gigahertz Wireless Sensors for Monitoring of Food
Transportation". Previous research studies reveal that high water content inside banana pal-
let restricts the communication between wireless sensor nodes operating at 2.4 Ghz frequency
below 0.5 meter by attenuating the radio signal. This issue hinders the remote monitoring of
temperature inside refrigerated container for food transportation.

New approach was required to solve this issue of signal attenuation. The versatile low
power Dash7 protocol, operates at 433 Mhz, becomes the solution to reduce attenuation and
achieve long range communication by integrating it in wireless sensor nodes. To measure
temperature and humidity inside the refrigerated container, node is interfaced to the Sht25
sensor and Tmp100 sensor by writing software driver for the I2C protocol and the EEPROM
is also interfaced for the permanent storage of these parameters by writing the same driver
to node. The sensor nodes measure the real measurement values from the interfaced sensors
and send it to the Gateway in real time after every minute by using Dash7 module. The
communication range of 20 meter tested inside the building was attained successfully without
any loss of packet. Experiments also carried out in a noisy open field area detected by the Rf
analyser, yielded the communication range of 60 meters without any packet loss. Maximum
communication range tested at 100 meter caused only one packet to receive at the gateway
end with -82 dB of node RSSI value. After optimizing the timing of communication operation
between sensor node and gateway, nodes draw only 200 µA current in sleep mode majority
of the time and 17.6 mA in the active mode only for a very short span of time which makes
the battery life of nodes quite long.

The magnificent improvement in the communication range between node and gateway by
using Dash7 protocol makes it completely beneficial to use it in Intelligent Container with its
high performance of reading range and low battery consumption.

iii

Acknowledgement

First of all I am very thankful to Almighty Allah, whose blessings helped me to carry out the
Master Thesis successfully.
I would also like to express my deeply gratitude to Prof.Dr.-Ing.Walter Lang, the head of the
IMSAS department, for granting me the opportunity to do my thesis under his supervision.
Special thanks to my second supervisor Dr.-Ing.Reiner Jedermann for giving me the guidance,
support, his sincere dedication to supervise the thesis with the outcome and his availability
during the whole period of my thesis.
Last but not least, I am very thankful to my parents, my whole family and friends for giving
me the love, courage, prayers and complete backing during my thesis.

Faisal Ali Khan

iv

Contents

1 Introduction 1
1.1 Thesis Background . 1
1.2 Motivation . 1

1.2.1 Proposed Solution . 2
1.3 Thesis Overview . 3
1.4 Tasks of the thesis . 3
1.5 Structure of the Report . 4

2 CC430F5137 and Its Peripherals 5
2.1 Wizzi Mote Board . 5
2.2 CC430F5137 Microcontroller . 6

2.2.1 Clock Sources . 6
2.2.2 Low Power Modes . 6
2.2.3 Timers . 7
2.2.4 WatchDog Timer . 10
2.2.5 I2C Serial Communication . 12
2.2.6 UART Communication . 20

3 Hardware Components and I2C Implementation 22
3.1 TMP100 Sensor Implementation . 22

3.1.1 Internal registers of TMP100 Sensor 23
3.1.2 I2C Communication with TMP100 . 24

3.2 SHT25 Sensor Implementation . 25
3.2.1 Communication Modes in SHT25 sensor 25
3.2.2 Resolution bits in SHT25 sensor . 27
3.2.3 Data Conversion for Temperature and Humidity 27

3.3 Serial EEPROM Implementation . 28
3.3.1 Device and Memory addressing in EEPROM 29
3.3.2 Write cycle in EEPROM . 30
3.3.3 Read cycle in EEPROM . 31
3.3.4 Demonstration of Timing Diagram on Oscilloscope 32
3.3.5 Prevention of Overwriting data in EEPROM 34

I

Contents

3.4 Battery Cells . 37
3.5 PCB Designing Of Interfaced Devices . 38

3.5.1 PCB Schematic Design . 38
3.5.2 PCB Board Design . 39
3.5.3 Complete PCB design . 40

4 DASH7 Alliance Protocol 42
4.1 Dash7 Introduction . 42
4.2 Dash7 Software Stack . 43
4.3 Dash7 Applications . 44

4.3.1 Home Automation . 44
4.3.2 Parking Guidance . 44
4.3.3 Automotive Senors . 44
4.3.4 Military . 44

4.4 Dash7 Version . 44

5 Gateway and Node Communication 45
5.1 Communication Overview . 45
5.2 Detailed Description of the Communication 46

5.2.1 Gateway State Machine . 46
5.2.2 Sensor Node Operation . 49

5.3 Software Modules . 50
5.3.1 List of All Software Modules . 50
5.3.2 Software Modules for Getting Current Sensor Measurements 52
5.3.3 Software Modules for Getting EEPROM values 53

5.4 Offline Mode . 54
5.5 Java Software Modification . 55

5.5.1 Log File Data Presentation . 56
5.6 IDE for the Software . 57
5.7 Code at SVN . 57

6 Testing and Measurements 58
6.1 Testing in Building . 58

6.1.1 Test One . 59
6.1.2 Test Two . 62

6.2 Testing In an Open Field . 65
6.2.1 First Test . 65
6.2.2 Second Test . 69
6.2.3 Third test . 71

II

Contents

6.3 Current Measurements . 75
6.3.1 Current Consumption of Node when Sending EEPROM Data 76
6.3.2 Current Consumption of Node when Sending Real Measurement Data 76
6.3.3 Current Consumption in Offline Mode 77

7 Conclusion 78

List of Figures 79

Bibliography 82

III

1 Introduction

The scope of this chapter is to get familiar with the background of the thesis, thesis motivation
and its objectives. Additionally, structure of the whole report is described.

1.1 Thesis Background

Intelligent Container, a prototype, is used for the transporting of foods and fruits such as
bananas. Foods such as bananas and meat are loaded on the containers in ships from the
Costa Rica are to be delivered in Europe. It is the utmost requirement to transport foods from
one place to another in the quality condition without the food ripening. There are several
factors of food ripening inside the container such as varying temperature, relative humidity,
atmospheric conditions such as O2 and CO2, the emission of the Ethylene gas by the fruits
such as bananas also causes the ripening of other fruits. This gas is ejected when they ripen.
The green life of bananas estimation, the time span until the bananas start to ripen, allows
to take subsequent action such as First Expired First Out: the technique in which the food
with low life cycle is delivered first [1]. Studies have been carried out already to estimate the
green life of bananas, such as keeping the temperature to 13°C lasts the green life to 31.9 days
in the storage or warehouse provided that the temperature must be 14°C in the 14 days of
the sea transportation of bananas [2]. The humidity plays also an important role in storing
bananas, high relative humidity of 90−95 percent is proposed [3]. Atmospheric conditions of
5% CO2 and 2% O2 concentration also become a factor to delay the ripening. Temperature
below 13°C causes the chilling injuries, so it is avoided[2]. Finally, it can be concluded that
the temperature inside the container is of significant importance along with other parameters
in order to prevent the ripening.
It was required to develop a system which can monitor all these conditions remotely. Wireless
sensors, microcontroller with interfaced sensors, is the perfect choice to monitor humidity and
temperature inside the refrigerated container.

1.2 Motivation

Reduction of signal attenuation and distance for the radio waves propagation of the wireless
sensors operating at 2.4 Ghz inside a banana pallet is considered as a major problem. Due
to increased water content in banana, the radio propagation of the radio chips inside sensor

1

1 Introduction

nodes can fall below 0.5 m. The sensors placed inside a banana pallet is a TelosB hardware
which uses frequency of 2.4 Ghz with IEEE 802.15.4 standard. The sensors send data to the
gateway over multiple hop due to signal attenuation[4]. The communication diagram of such
a monitoring is shown in figure 1.1.

Figure 1.1: Remote Monitoring [5]

The gateway data can be sent to the the wireless lan, satellite or gprs and can be accessed on a
web server placed at a remote location. Testing of the signal attenuation of these sensors was
performed in [6]. It was found out that -72.5 db signal strength was achieved when sensors
placed in the middle of the banana pallet at a distance of 0.25 m from each other and reduced
further to -83.6 dB at distance of 0.5 m with only 52 percent of packets received. Due to
these limitations, sensor nodes with the high communication range were badly needed.

1.2.1 Proposed Solution

Theoretical studies have shown that sensor nodes operating below 1 GHz frequencies are much
less influenced by the fruits containing water contents than the sensors currently operating
at 2.4 GHz range. A higher communication range and higher reliability of the radio link is
expected from wireless modules according to the dash7 standard, operating at 433 Mhz [6].
DASH7 is an open source wireless sensor networking standard, which operates in the 433 MHz
with the ISO 18000-7. It is power efficient radio protocol, transmits maximum 200 kbps and
penetrates in concrete and liquids[7]. Dash7 also gives the feasibility of the communication
between the Gateway and the sensor node with multi-hop. Due to these considerations of the
Dash7, OSS-7 open source implementation of the Dash7 protocol has been implemented in
the supported hardware such as WizziMote in the project. The WizziMote is a board which
has the CC430F5137 controller chip with the radio frequency core chip like CC1101 in one
package.

2

1.3 Thesis Overview

1.3 Thesis Overview

An overview of the thesis can also be seen in figure 1.2. The gateway communicates with each
sensor node on 433 Mhz frequency to get the required data. The sensor node, interfaced with
sensors and EEPROM by I2C interface, responds by sending the sensor data to the gateway
and writing it in the EEPROM. The sensor values which is received on gateway is sent to a
PC through serial communication (UART) of gateway. On the PC, the Java software creates
a log file and saves the data obtained from the gateway.

Figure 1.2: Overview of the thesis

1.4 Tasks of the thesis

Keeping in mind of the problems stated above, different tasks are defined for the thesis.

• Study of complete implementation of wireless sensor nodes.

• Connect combined temperature and humidity sensor such as Sht25 to the wizzimote
board for measuring temperature and humidity inside the banana pallet and write the
I2C software driver.

• Connect low cost Temperature sensor such as Tmp100 to the wizzimote board for mea-
suring temperature of the sensor node and write the I2C software driver.

3

1 Introduction

• Connect EEPROMmemory such as 24AA64 to the wizzimote and write the I2C software
driver. EEPROM is used for storing the sensors data permanently, which is needed in
case of weak radio link.

• Integrate the sensor queries for direct communication between the sensor node and a
gateway. The sensor node should transmit data to the gateway in real time as well as
store the data in the EEPROM.

• Implement energy efficient programming by making use of low power modes in the
microcontroller and use hardware watchdog for any system failure.

• Modify already existing Java software to receive sensor data on a PC from the Gateway
and write them in a log file.

• Demonstration with four or more nodes either in banana container at the project partner
Dole or in a building.

• Performance study analysis of the received signal strength with the reading range.

• Measure current consumption in sensor nodes in active and sleep mode.

• Documentation of complete hardware and software modifications.

1.5 Structure of the Report

After introduction, the thesis work is organized as following:

• Chapter-2: Gives detailed description of the used peripherals of micrcontroller and their
configurations settings.

• Chapter-3: Describes the hardware components used in the project such as Tmp100,
Sht25, 24AA64 EEPROM etc and their implementation of I2C interface.

• Chapter-4: Describes the DASH7 alliance protocol.

• Chapter-5: Description of the communication between the Sensor node and Gateway
and the software written for it.

• Chapter-6: Describes the testing performed.

• Chapter-7: Conclusion.

4

2 CC430F5137 and Its Peripherals

In this chapter, all the peripherals and the functionalities of the microcontroller which have
been implemented in the project are described briefly here. CC430F5137 microcontroller has
been used in this project, this controller is mounted on the WizziMote board. The sensors such
as Sht25 and Tmp100 and the EEPROM memory are interfaced with this microcontroller.

2.1 Wizzi Mote Board

The Wizzi Mote consists of Texas Instrument CC430F5137 Micocontroller and wireless an-
tenna matching circuit with the range of 433Mhz. This Kit is the most suitable for Dash7
development applications because of its size, price and its capability to switch easily from one
application to another.
CC430 family provides integration of the microncontroller core with the RF core, therefore
making it a true System-on-chip solutions and highly efficient in wireless applications. One
can use this board to develop its wireless applications aiming at 433Mhz and this becomes
the solid reason to use such a microcontroller in the project [8]. The Wizzi Mote Board is
shown in figure 2.1.

Figure 2.1: Wizzi Mote [9]

Some of the important pins used in the project have been described here. DIN (P2.0)
and DOUT (P2.1) in Wizzi Mote Board are specifically assigned for Serial Communication

5

2 CC430F5137 and Its Peripherals

(UART) through port mapping technique of microcontroller. Port mapping is a technique by
which the functionality of UART pins UCBORX (P1.5) and UCBOTX (P1.6) are assigned
to the pins of DIN (P2.0) and DOUT (P2.1), but before implementing port mapping it is
necessary to check the port pins of the microcontroller in the data sheet that whether these
pins can be mapped or not. GPIO 0 to 4 pins on this board have been used for the JTAG
access. GPIO 6 (P1.2) and GPIO 7 (P1.3) used for the I2C interface. The board has three.
push buttons as well as three leds [9].

2.2 CC430F5137 Microcontroller

CC430F5137 microcontroller is of 48 pins and can be powered from 1.8V to 3.6V. It is a 16
bit low-powered microcontroller. CC430F5137 has Port1, Port2, Port3 of 8 pins, while Port5
is of 2 pins. Some of the important features and peripherals of the microcontroller which have
been used in the project are described below.

2.2.1 Clock Sources

Almost every Msp430 microcontrollers and CC430 family controllers have UCS (Unified clock
System) module in it. This UCS module can provide three clock signals (MCLK, SMCLK,
ACLK) which can be sourced from five different sources such as XT1CLK, REFOCLK, VLO-
CLK, DCOCLK, DCOCLKDIV, and XT2CLK.

• MCLK: Master Clock

It is used as a high clock source for the CPU and system.

• SMCLK: Subsystem master clock

It is also a high frequency clock and is used in peripheral modules. SMCLK can be
selected by software.

• ACLK: Auxiliary Clock

It is a low frequency clock of 32Khz. It can also be selected by software when we use
peripheral modules.

In the project, SMCLK clock with a frequency of 4 Mhz has been used for normal processing
of instructions. But we can use other clocks also for different peripherals.

2.2.2 Low Power Modes

Low Power Mode functionality helps to save the power in the controller. In the project, low
power mode has been implemented whenever the controller is in idle state. CC430F5137
microcontroller has five low power modes. In the project low-power mode 0 has been used.

6

2.2 CC430F5137 Microcontroller

If the low power mode is activated, microcontroller remains in low power mode or in sleep
mode unless it receives any interrupt.

• Low-power Mode 0

In this mode CPU and MCLK are disabled, while SMCLK and ACLK remains active.

In the active mode of the microcontroller, it draws 160µA/Mhz [10]. When LPM0 (Low
Power Mode 0) is activated then it draws approximately 85µA current [11].
The low power mode is activated by writing the below mentioned instruction.
_bis_SR_register(LPM0_bits+GIE);
As soon as the above instruction is executed, microcontroller goes in sleep mode with the
interrupt enabled. The microcontroller comes to active mode when it receives any interrupt
such as Watchdog timer interrupt, Timer interrupt, Serial UART or I2C serial interrupt and
RF receiving data interrupt. The low power mode 0 can be turned off by the following
instruction. _bis_SR_register_on_exit(LPM0_bits);

2.2.3 Timers

Timer also plays an important role in the project to give a time delay by activating it in low
power mode. The microcontroller has two timers TA0 and TA1 with 16-bit register TAR.
Both timers have been used in the project. For the radio operations timer TA1 was already
implemented in the software interface of Dash7 whereas TA0 has been implemented in the
project for I2C operations to give a specified delay until the interfaced sensors give response
and the value written in the EEPROM. These timers can be sourced from different clock
sources. There are three different operating modes of timer which are stated below [12].

• Continuous Mode

• Up Mode

• Up/Down Mode

In the project, up mode of the timer with enabled timer interrupt in compare mode has been
used to save the power consumption in the sensor nodes.

2.2.3.1 Up Mode

In the up mode of the timer, any desired value can be set in the capture/compare register
TAxCCRx of timers, in order to give a delay to generate any output in the program. In
the capture mode, any external event whether rising or falling edge can terminate the timer
delay process by generating timer interrupt, whereas in compare mode the timer generates
interrupt when the value of TAR register becomes equal to the value stored in TAxCCRx

7

2 CC430F5137 and Its Peripherals

register. TAR also rolls to zero after reaching the value which is set in the TAxCCRx register.
Up mode of the timer is shown in figure 2.2.

Figure 2.2: Up Mode

2.2.3.2 Timer registers

Different registers are used for the configuration of timer. Some important timer registers
used in the project are described below [12].

2.2.3.2.1 TAxCTL Register

TAxCTL is a control register used for setting the clock source of timer, dividing the frequency
clock and the different operating modes of timer can also be set in this register. It is a 16 bit
register as shown in figure 2.3.

Figure 2.3: TAxCTL Register [12]

TASSEL Bits
9th and 8th bits are used for the clock source of the timer.

• 00: TAxCLK

• 01: ACLK

• 10: SMCLK

• 11: INCLK

TAxCLK and INCLK are both external clocks. In the project, ACLK clock with default
frequency of 32768 Hz has been used.

ID Bits
7th and 6th bits are used for dividing the input clock which in our case is ACLK clock .

8

2.2 CC430F5137 Microcontroller

• 00: /1

• 01: /2

• 10: /4

• 11: /8

ID_3 divider mode (/8) has been in the project which makes the frequency from 32768 Hz to
4768 Hz.

MC Bits
5th and 4th bits are used for controlling the mode operation of timer.

• 00: Stop Mode

• 01: Up Mode

• 10: Continuous Mode

• 11: Up/Down Mode

As stated earlier, up mode of timer has been implemented in the project.

TACLR Bit
2nd bit is used to clear the timer value stored in the TAR register.

TAIE Bit
1st bit is used to enable the interrupt in timer. Interrupt is triggered when the timer value
reaches 0xFFFF.

TAIF Bit
0th bit is the timer interrupt flag and this bit is set when the timer overflows after reaching
0xFFFF.

2.2.3.2.2 TAxEX0 Register

TAxEX0 is a 16 bit register used for further dividing the clock frequency. 13 MSBs (15 to 3)
are reserved bits and set to zero. The three least most significant bits (2 to 0) of this register
with 8 different combinations can be used to divide the clock frequency further according to
the requirement. In the project, we use the combination of 011 which is 4 in decimal. So the
clock frequency is further divided by 4 which makes the ACLK frequency from 4768 Hz to
1768 Hz.

9

2 CC430F5137 and Its Peripherals

2.2.3.2.3 TAxCCTLn Register

TAxCCTL is a 16 bit Capture/Compare control register as shown in figure 2.4.

Figure 2.4: TAxCCTLn Register [12]

Compare mode is activated by setting the 8th bit of this register to "0" which is called CAP bit.
4th bit is the Capture/Compare interrupt enable bit (CCIE), which activates the interrupt
for the Capture/Compare mode. In the project, this bit is activated.

2.2.3.2.4 TAxCCRn Register

TAxCCRn is a 16 bit register which is used to hold the desired delay time in the timer and
this value is compared with the TAR register.

2.2.4 WatchDog Timer

The main function of watchdog timer is to prevent our system against any failure. If any
software problem occurs in our system then the watchdog timer allows the system to reset.
It was required to use this timer in the project because if any of the interfacing devices
(Sht25, Tmp100 and EEPROM) or any peripheral does not work properly so a system reset
is required instead of hanging. Watchdog timer has a counter of 16-bit register WDTCNT.
The watchdog timer becomes active as soon as the controller is turned on. This counter
must be continuously cleared in our program so that our microcontroller should not be reset
without any malfunction. This process is called Kicking the Dog. Watchdog Timer also allows
different clock sources for its counter. The WatchDog Timer has a 16 bit control register used
for the configuration of this timer as shown in figure 2.5.

Figure 2.5: WDTCTL Register [12]

WDTPW Bits
WDTPW bits (15 to 8) are used for the protection against any accidental writes by writing
the password 0x5A in the upper byte. Reading this upper byte shows 0x69 value. Value
other than 0x5A will cause the controller to reset.

10

2.2 CC430F5137 Microcontroller

WDTHOLD Bit
7th bit is the WDTHOLD bit, which is the hold bit. Setting the value of WDTHOLD to "1"
stops the watchdog timer and its operation is resumed again by assigning the WDTHOLD
bit to zero.

WDTSSEL Bits
6th and 5th bits are the WDTSSEL bits used for selecting the clock sources of the watch dog
timer.

• 00: SMCLK

• 01: ACLK

• 10: VLOCLK

• 11: X_CLK

By default SMCLK is the clock source of this watchdog timer but this can be changed by
the WDTSSEL bits.

WDTTMSEL Bit
WDTTMSEL is the 4th bit which provides the option to change it into normal timer mode
and does not reset the controller.

• 0: Watchdog mode

• 1: Interval timer mode

WDTCNTCL Bit
3rd bit is the WDTCNTCL bit. Setting WDTCNTCL bit to "1" clears the watchdog timer
counter to 0000h. In the software program, this bit is continuously set to "1" to clear the
counter again to prevent overflow which causes the controller to reset.

WDTIS Bits
WDTIS bits (2 to 0) provide the division factor of the clock frequency and the interval of
the watchdog timer can be selected from any of these combinations. The clock frequency is
ACLK for the below mentioned watchdog timer interval.

• 000: clock source/(231) (18 hr 12 min 16 sec)

• 001: clock source/(227) (1 hr 8 min 16 sec)

• 010: clock source/(223) (4 min 16 sec)

11

2 CC430F5137 and Its Peripherals

• 011: clock source/(219) (16 sec)

• 100: clock source/(215) (1 sec)

• 001: clock source/(213) (250 ms)

• 110: clock source/(29) (15.625 ms)

• 111: clock source/(26) (1.95 ms)

In the project, WDTIS bits are assigned to 2(010) which sets the watchdog timer interval to
4 minutes and 16 sec.

2.2.5 I2C Serial Communication

For the interfacing of sensors and memory to the microcontroller, I2C serial communication
interface has been used. I2C stands for Inter-integrated Circuit Bus. It was invented by
Philips in 1982. The original throughput of I2C is 100 kbps, but some devices also support
400 kbps and 3.4 Mbps. I2C is also called two wire interface protocol because it uses only
two lines for the data transfer between devices, so it has a two wire bidirectional lines:

• Serial Data Line (SDA)

• Serial Clock Line (SCL)

In the project, we have one master device (CC430F5137 microcontroller) and three slave
devices (two sensors and one EEPROM memory) as shown in figure 2.6.

Figure 2.6: I2C bus with Master and Slaves [13]

Data is transferred through the SDA line whereas SCL line is the synchronisation clock for
the data transfer. Devices attached to the I2C bus can be either Masters or slaves. The
Master drives the SCL clock line. The master accesses every slave by its unique address and
initiates the data transfer through SDA to these slaves and is also responsible for terminating
the data transfer. Slaves can drive the data line, when it sends any data to the master. There

12

2.2 CC430F5137 Microcontroller

can be more than one master on I2C bus but only one master has a control of bus [14].
The pull up resistors are connected to both SCL and SDA lines. The slave can pull the data
line low as acknowledgement signal, when the master accesses it by sending its address. If
none of the slave devices sets the SDA line low (0) then it remains high (1) through pull up
resistors. The value of these pull up resistances are selected by checking the bus capacitance
and the rise time of the slave device in the data sheet. Normally it is selected in the range of
1-10K . In this project, pull up resistors with 4.7K values have been used.

2.2.5.1 I2C Protocol

In this section, the transmission of I2C protocol has been described.

• Start Condition

At the start of transmission, the master sends the start condition informing all the slaves
that something is going to be transmitted on the I2C lines. In the start condition(S),
SDA line is pulled down while the SCL remains high as shown in figure 2.7.

Figure 2.7: Start Condition

• Stop Condition

When all the data is transferred between master and slave, then the master issues a stop
condition and the bus becomes idle. This is done by releasing the SCL line followed by
SDA line as shown in figure 2.8.

Figure 2.8: Stop Condition

13

2 CC430F5137 and Its Peripherals

• Device addressing

The device addressing can be 7 or 10 bits. In the project, 7 bit addressing has been used.
Every device has unique 7 bit address. The Master sends the device address on I2C bus
after sending start condition. The MSB is transmitted first in the address and the last
bit indicates the direction bit R/W , which shows whether we want to read/write the
data from/to the slave. The direction bit is not part of the slave address.

• Data Transfer and Acknowledgement

The data sent over the I2C bus must be of 8 bits. The MSB is always sent first on the
SDA line. The data on the SDA line must be valid or can be read when the SCL line
is high and the state of the SDA line can be changed while the SCL line is low. On
receiving every byte, the slave acknowledges it by pulling the SDA line low. When the
slave sends data to the master, the master also acknowledges it in the same way. The
master gives no acknowledgement signal when it receives the last byte from the slave
followed by the stop condition.

2.2.5.2 I2C Protocol Example

Figure 2.9 shows the I2C example with one slave. In this example, the master is in receiver
mode.

Figure 2.9: I2C Example Diagram [15]

In the above figure, SCL line takes 8 clock cycles for the the master to send 7 bit device
address of slave followed by the read direction bit (R/W = 1) after the start condition. The
slave acknowledges its address by pulling the SDA line low and SCL detects it on 9th clock
cycle. The data on SDA line is changed when the SCL is low and remains valid until SCL
becomes high. In the next cycle, the slave transmits 8 bits data to the master and the master
terminates this process by sending not acknowledgement bit followed by stop condition.

14

2.2 CC430F5137 Microcontroller

2.2.5.3 CC430F5137 I2C Module

USCI_BO module in the controller supports both I2C and SPI. This module supports max-
imum 400 Kbps in I2C mode. There are four different modes of I2C in USCI_BO module
which are master transmitter, master receiver, slave transmitter, or slave receiver mode
[12]. In the project, master transmitter and receiver mode has been used. Some important
registers used in this project have been described below.

2.2.5.3.1 UCBxCTL0 Register

UCBxCTL0 is a 8 bit control register 0 as shown in figure 2.10.

Figure 2.10: UCBxCTL0 Register [12]

UCA10 Bit
UCA10 is the 7th bit, which allows to select the master own address in 7 bit or 10 bit.This
bit is used when multiple masters are used.

• 0: 7 bit address

• 1: 10 bit address

UCSLA10 Bit
6th bit is the UCSLA10 Bit. This bit is used to select the 7 bit or 10 bit address of slave.

• 0: UCTXSTT bit slave address

• 1: 10 bit slave address

In this project, 7 bit slave address has been used.

UCMM Bit
5th bit is the UCMM bit. Multi master mode can be selected by setting UCMM bit to "1".

• 0: Single Master

• 1: Multiple Master

In this project, this bit is always zero because single master (controller) has been used.

UCMST Bit
UCMST is the 3rd bit. This bit makes the USCI_BO module to operate as Master or Slave.

15

2 CC430F5137 and Its Peripherals

• 0: Slave mode

• 1: Master mode

As only one microcontroller has been used in this project, so it is necessary to operate this
module as Master.

UCMODEx Bits
The 2nd and 1st bits (UCMODEx) enable to use this module in I2C mode or SPI mode. The
first three combinations are used for different modes in SPI mode while the fourth combination
is used for I2C mode.

• 00: SPI mode

• 01: SPI mode

• 10: SPI mode

• 11: I2C mode

In this project, the fourth combination (UCMODE_3) has been used.

UCSYNC Bit
The 0th bit (UCSYNC) is the selection of transmission in synchronous or asynchronous mode.
I2C is synchronous protocol so this bit is set to "1" to enable it in the synchronous mode.

• 0: Asynchronous

• 1: Synchronous

2.2.5.3.2 UCBxCTL1 Register

UCBxCTL1 is also a 8 bit control register 1. The bits in this register is shown in figure2.11.

Figure 2.11: UCBxCTL1 Register [12]

UCSSELx Bits
Bit 7th and 6th (UCSSELx) are used for the selection of clock sources in the module.

• 00: UCLKI

• 01: ACLK

16

2.2 CC430F5137 Microcontroller

• 10: SMCLK

• 11: SMCLK

UCSSEL_2 (SMCLK) is the clock source with a frequency of 4Mhz used in this project.

UCTR Bit
Bit 4th (UCTR) sets the master in either transmitting or receiving mode depending on the
value of this bit.

• 0: Master in receiver mode/Master can read data

• 1: Master in transmitter mode/Master can write data

It can also be described that the UCTR bit allows to switch the selection of read or write
operation for the Master.
UCTXNACK Bit
Bit 3rd (UCTXNACK) when set to "1", enables the master to transmit the not acknowledge
signal to the slave when it receives all the required data from the slave.

• 0: Send acknowledge signal

• 1: Send not acknowledge signal

UCTXSTP Bit
Bit 2nd (UCTXSTP) when set to "1", the master generates the stop condition. This bit is
automatically set to zero again after generating the stop condition. This bit must be sent by
the master, when the master receives the last byte from the slave or transmits the last byte
to the slave as an indication of the termination of the data.

• 0: No stop condition

• 1: Send stop condition

UCTXSTT Bit
Bit 1st (UCTXSTT) when set to "1", the master generates the start condition which alerts
all the slaves that something is going to be transmitted on the bus.

• 0: No start condition

• 1: Send start condition

17

2 CC430F5137 and Its Peripherals

This bit is also automatically set to zero when the start condition as well as the slave address
is transmitted.

UCSWRST Bit
Bit 0th (UCSWRST) is used to reset the USCI_BO module when set to "1".

• 0: clear reset

• 1: Enable reset

2.2.5.3.3 UCBxBR0 Register

UCBxBR0 is a 8 bit baud rate register, used for dividing the SCL clock frequency making it
compatible to the maximum allowed transmission rate in the USCI_BO module. As it was
stated earlier, USCI_BO module supports maximum 400 kbps. UCBxBR0 with a value of
12 assigned to it in the project, which makes the frequency around 301.7Khz.

2.2.5.3.4 UCBxSTAT Register

UCBxSTAT Register is a status register to check the status of some bits as shown in figure
2.12.

Figure 2.12: UCBxSTAT Register [12]

In this project, only 4th bit (UCBBUSY) has been used. UCBBUSY bit informs the status
of bus. When set to "1", it means the I2C bus is busy otherwise idle. When the master
sends the start condition bits, UCBBUSY is always set to "1" and cleared automatically upon
sending the stop condition bits. This bit is always checked before sending the start condition
to the slave devices, if this bit is found "1" then it is necessary to reset it otherwise the slave
does not acknowledge its own address.

2.2.5.3.5 UCBxRXBUF Register

UCBxRXBUF is a 8 bit receive register. When the complete 8 bit value from the receive
shift register is written in the UCBxRXBUF register, receiver interrupt flag UCRXIFG flag
is set. When this register is accessed by the user to read the value in this register, UCRXIFG
flag is automatically reset.

18

2.2 CC430F5137 Microcontroller

2.2.5.3.6 UCBxTXBUF Register

UCBxTXBUF is a 8 bit transmit register. 8 bit data is written by the user in this register
to transmit, which clears the transmit interrupt flag UCTXIFG also.

2.2.5.3.7 UCBxI2CSA Register

UCBxI2CSA is a 16 bit slave address register. 7 bit or 10 bit slave address is written in this
register and the bits are right justified. Bit 10 to 15 of this register are reserved. For slaves
used in this project, 7 bit slave address has been used. Bit 6 of this register represents the
most significant bit of the slave address.

2.2.5.3.8 UCBxIE Register

In the project, transmitting or receiving of data in the I2C has been performed with the help
of interrupts. UCBxIE is a 8 bit register used for activating the interrupts as shown in figure
2.13. 7th and 6th are reserved in this register.

Figure 2.13: UCBxIE Register [12]

UCNACKIE Bit
5th bit (UCNACKIE) is the not acknowledge enabling interrupt. If the slave devices send
not acknowledge signal, not acknowledge interrupt flag (UCNACKIFG) is set to "1" and
can be determined by enabling this interrupt which causes the program execution to jump
in the interrupt service routine. This bit was used in the project when testing the slaves
individually and then removed afterwards.

UCALIE Bit
4th bit(UCALIE) is arbitration enabling interrupt. It is used when there are more than one
master. This bit is of no use in this project.

UCSTPIE Bit
3rd bit (UCSTPIE) is the stop condition enabling interrupt. If activated, the code execution
jumps to the ISR when the stop condition is initiated by the master.

19

2 CC430F5137 and Its Peripherals

UCSTTIE Bit
2nd bit (UCSTTIE) is the start condition enabling interrupt. If activated, the program
execution also jumps to the ISR when the start condition is initiated by the master.

UCTXIE Bit
1st bit (UCTXIE) used for activating transmit interrupt. When this interrupt is enabled, the
program jumps to the ISR when the master sends the start condition and the slave address
followed by the write direction bit.

UCRXIE Bit
0th bit (UCRXIE) used for enabling receive interrupt. When this interrupt is enabled, the
program jumps to the ISR when the master sends the start condition and the slave address
followed by the read direction bit.

2.2.5.3.9 UCBxIV Register

UCBxIV is a 16 bit interrupt vector register as shown in figure 2.14.

Figure 2.14: UCBxIV Register [12]

• 00h: No interrupt

• 04h: Not acknowledge interrupt flag (UCNACKIFG)

• 0Ah: Data received interrupt (UCRXIFG)

• 0Ch: Transmitter buffer is empty and new data can be written in the UCBxTXBUF
register. This interrupt has the lowest priority

2.2.6 UART Communication

For sending the data from the Gateway to the PC, UART communication has been used. USCI
module of CC430F5137 also supports UART serial communication. UART is an asynchronous
serial communication when it is connected to an external device via PM_ UCA0TXD and
PM_ UCA0RXD pins and it offers the communication on the same baud rate. The UART
can send the data in 7 or 8 bit. The data format of sending a character in UART is shown in
figure 2.15.

20

2.2 CC430F5137 Microcontroller

Figure 2.15: Data Format [12]

• ST: Start bit

• D0-D6: 7 bit data, LSB is transmitted first

• D7: D7 is the eight bit and it is sent when UC7BIT = 0 in the UCA0CTLO register

• AD: AD is the address bit which is sent when UCMODEx=10

• PA: PA is the parity bit(odd or even) which is sent when UCPEN=1 in the UCA0CTLO
register

• SP: SP is the stop bit which indicates the termination of transmission and the second
stop can also be send when UCSPB=1 in the UCA0CTLO register

2.2.6.1 UART Baud Rate and Clock

BRCLK is the clock source of UART, which is generated from SMCLK in the project. The
different baud rates can be selected by the user according to the requirement which can be
seen in the CC430 user's guide. In the project, baud rate of 115200 has been configured.

2.2.6.2 Transmit Data Register

UCA0TXBUF is a 8 bit register which contains the user data for transmission and the data
is transmitted to the UCA0TXD pin of the controller via transmit shift register. When the
UCA0TXBUFF register is empty, the corresponding UCTXIFG (transmit flag) sets to "1"
indicating that the transmit data register is ready to accept the new data.

21

3 Hardware Components and I2C
Implementation

In this chapter, all the main components of interfacing hardware with the microcontroller are
described in detail. The key components of Hardware used are mentioned below.

• Tmp100 Sensor

• SHT25 Sensor

• Serial EEPROM

• Battery Cells

• PCB Designing Of Interfaced Devices

3.1 TMP100 Sensor Implementation

Tmp100 is a digital temperature sensor with I2C serial communication interface. It has
operating temperature range of -55°C to +125°C. The user can select the resolution of this
sensor according to requirement. It has resolution from 9 to 12 bits. Its accuracy is ±2.0°C
and ±3.0°C with the temperature ranges of -25°C to +85°C and -55°C to +125°C respectively.
It can be operated from 2.7V to 5.5V[16]. The circuit connection of Tmp100 is shown in figure
3.1.

Figure 3.1: Tmp100 internal circuit [16]

Pin 1 (SCL) and Pin 6 (SDA) lines of this sensor require pull-up resistors and are connected
to the micrcontroller SCL and SDA pins. Pull-up resistors of value 4.7 kΩ have been used in

22

3.1 TMP100 Sensor Implementation

the project. Pin 5(ADDO) and Pin 3(ADD1) address lines are used to interface 8 TMP100
sensors with different combinations but in the project we use only one combination. Pin 4
and Pin 2 represents Vcc and Gnd respectively. By pass capacitor of 0.1 µF is also used at
the supply voltage.
This sensor is selected in the project because of its low cost, high operating range of tem-
perature, user selectable resolution bits, I2C communication protocol and its low power con-
sumption. The sensor is used for measuring the temperature inside the sensor node housing.

3.1.1 Internal registers of TMP100 Sensor

Tmp100 sensor has some internal registers. Three registers which have been used in the project
are described below. The pointer register which can point or address the other registers,
configuration register for the sensor and temperature register for reading the temperature
value from the sensor. Register structure of Tmp100 is shown in figure 3.2.

Figure 3.2: Internal Registers TMP100 [16]

3.1.1.1 Pointer Register

Pointer Register is a 8 bit register which is used to access all the registers of TMP100. For
accessing the registers, only its 2 least significant bits are used out of 8 so the remaining 6
MSBs are assigned to zero as shown in figure 3.3.

Figure 3.3: Pointer Register addressing [16]

Upon power-up reset of Tmp100, pointer register always addresses to Temperature register.
It means two LSBs are always zero after Tmp100 reset [16].

23

3 Hardware Components and I2C Implementation

3.1.1.2 Temperature Register

Temperature register that holds the temperature value is a 12 bit read register. Two data
bytes are needed to read this temperature register in which the 12 most significant bits
correspond the value of temperature while the four LSBs are assigned to zero. After reading
the two data bytes from Tmp100 and then shifting it four times by right shift operator yields
the real temperature value [16].

3.1.1.3 Configuration Register

Configuration register is also an 8 bit register which is accessed through the pointer register.
Bit 5 (RO) and Bit 6 (R1) in this register allows to set the resolution of the temperature
values as shown in figure 3.4.

Figure 3.4: Resolution bits [16]

If the resolution of sensor is increased, the conversion time required for the temperature value
also increases. In the project, the resolution of the sensor has been set to 0.25°C (10 bits)[16].

3.1.2 I2C Communication with TMP100

Tmp100 sensor behaves either as slave transmitter or slave receiver device and is capable of
supporting I2C protocol with the frequency from 400kHz to 3.4MHz. Timing diagram of I2C
communication with Tmp100 in read mode is shown in figure 3.5.

Figure 3.5: Read Data Timing Diagram [16]

When the microcontroller sends the slave address (Tmp100) over the I2C interface in read
mode then the sensor starts to send the temperature values to the microcontroller. This

24

3.2 SHT25 Sensor Implementation

process is slave transmitter mode in Tmp100, because after acknowledging the address the
slave transmits data to the microcontroller[16]. The diagram depicts that the master sends
the stop bit after receiving two data bytes from the Tmp100 sensor.

3.2 SHT25 Sensor Implementation

Sht 25 is a digital temperature and humidity sensor with the I2C interface protocol and gives
the reading very accurate and precise. Its operating voltage range is 2.1 to 3.6 V. It supports
the I2C protocol with the clock of maximum 400 kHz. It is also 6 pin device with the DFN
type package. It also consumes very low power. Its temperature range is -40°C to 125°C
while the humidity range is 0 to 100% RH. Temperature accuracy is ±0.2°C and humidity
accuracy is ±1.8% RH. The reason for selecting this sensor in the project is to monitor high
accuracy humidity and temperature values inside the banana pallet, resolution of 0.01°C for
temperature and 0.04% RH for humidity and low power consumption in active or inactive
state[17]. The connection diagram of Sht25 is shown in figure 3.6.

Figure 3.6: Sht25 and its connection [17]

It is clearly seen from the figure, Pin 1 (SDA) and Pin 6 (SCL) of the sensor are connected
to the microcontroller SDA and SCL lines respectively. Pin 2 and Pin 5 corresponds to the
Gnd and Vcc lines respectively. Pin 3 and Pin 4 remains unconnected [17].

3.2.1 Communication Modes in SHT25 sensor

There are two modes in Sht25 when it communicates with the microcontroller.

• Hold Master Mode

• No Hold Master Mode

3.2.1.1 Hold Master Mode

In the hold master mode, the sensor Sht25 halts the SCL line until it finishes the measure-
ment process. Sht25 sets the SCL line to zero and the master is put on the hold state during
the measurement of temperature or humidity and then releases the SCL line when the mea-
surement process finishes. After the measurement process, the microcontroller can read the

25

3 Hardware Components and I2C Implementation

temperature or humidity data from the sensor. The whole timing diagram is shown in figure
3.7.

Figure 3.7: Hold Master Mode [17]

The microcontroller sends the Sht25 address with writing mode enabled. The sensor acknowl-
edges the address on bit 9 and then the microcontroller transmits the hold master mode data
of 8 bit starting from bit 10 for measuring temperature or humidity. The sensor acknowledges
the transmitted data by setting the SDA line low on bit 18. To read the value of temperature
or humidity, the microcontroller has to send the start bits again with the reading mode en-
abled and the sensor acknowledges the address on bit 27. After bit 27 it is clearly visible from
the figure that no transmission is possible because the SCL is kept to zero value by the sensor
in the measurement process. When the sensor releases the SCL line then the microcontroller
reads the two data bytes of the temperature or humidity. The third byte CRC checksum is
optional and can be omitted by sending the not acknowledgement followed by stop bit[17].
In the project, we use no CRC so we send the not acknowledgement bit followed by the stop
bit.

3.2.1.2 No Hold Master Mode

In no hold master mode, the sensor does not force the SCL line to pull down so other com-
munication can also be possible. In this case if we try to read the temperature or humidity
values, after sending the start condition followed by the data which triggers the sensor in no
hold master mode, the microcontroller continuously checks the internal processing of mea-
surement. If the internal processing is not finished then the microcontroller receives the not
acknowledge signal from the sensor. To overcome the polling process to some extent, it is
advisable to give a delay of 20 µs after receiving the acknowledgement in no hold master mode
of sensor. This communication is shown in figure 3.8.
Here in no hold master mode, the CRC checksum is an option but can be avoided in the same
way by transmitting not acknowledgement and stop bit after bit 44. The 14 MSBs in the
two data bytes received from the sensor indicate the data for either temperature or humidity

26

3.2 SHT25 Sensor Implementation

Figure 3.8: No Hold Master Mode [17]

value while the two LSBs are the status bits. Bit 43 indicates us that the data which we
have obtained in 14 MSBs is of either temperature or humidity. If it is ’0’ then it indicates
temperature data otherwise humidity data. Bit 44 is set to ’0’. This also holds true in hold
master mode[17].

In the project, hold master mode communication is used for the temperature and humidity
values because in this mode the microcontroller does not have to do polling for receiving the
data bytes from the sensor. Whereas in no hold master mode the sensor gives three or four
times no acknowledgement signal when it is in the process of getting measurement before
receiving the measured values.

3.2.2 Resolution bits in SHT25 sensor

The user register in Sht25 gives us the possibility to select the resolution of temperature from
11 bit to 14 bit and 8 to 12 bit for humidity. Default resolution of temperature in Sht25
sensor is 0.01°C (14 bit) and for humidity is 0.04% RH (12 bit). The recommended value
of time delay to get such a resolution is typical 85 msec for temperature and 22 msec for
humidity[17]. In the project, the default values of resolution for temperature and humidity
values have been used.

3.2.3 Data Conversion for Temperature and Humidity

Before the conversion, we set the two least significant bits to zero which correspond the status
bits in the two data bytes received from the sensor. The equation for getting the physical
value of temperature, we use the below mentioned equation.

27

3 Hardware Components and I2C Implementation

3.2.3.1 Temperature Output

Below mentioned formula gives us the reading in °C.

T = −46.85 + 175.72 × ST

216 (3.1)

In the above equation, ST represents the value of 2 byte received from the sensor. T will give
us reading in °C [17].

3.2.3.2 Humidity Output

The physical value of relative humidity can be received by the following mentioned equation.

RH = −6 + 125 × SRH

216 (3.2)

SRH is the value of 2 byte received from the sensor. The value of RH denotes the relative
humidity above liquid water [17].

3.3 Serial EEPROM Implementation

EEPROM stands for Electric Erasable Programmable Read Only Memory. It is a non-
volatile memory, which means it stores its data after power shut down. So data storage in
such a memory is permanent. CC430F5137 has also 32 Kb flash memory and it initializes its
peripherals from this memory like Boot code and Boot strap loader etc. So special precaution
is necessary to write data inside this memory. This flash memory has also 4 blocks named as
info flash of size 128 bytes from info A to info D and in these blocks one can write and read
its data easily [12]. But the size of these blocks is not enough for our application and the old
data must be erased before writing the new data. Interrupt mode can not be used in these
flash memory and this is also a big disadvantage for an application like our project, where
low power operations are highly required.
EEPROM has the feature of erasing the older data replacing with the new data. It means
we have the possibility of re-writing the data into the EEPROM. In this project 24AA64
Serial EEPROM has been used. It is also a device with an I2C interface. It has a capacity
of 64Kb (64 kilo bits) or 8KB (8 kilo bytes), which means it can store 8 bit data in its 8192
locations. Such a EEPROM was required in the project to store temperature value of Tmp100
sensor and humidity and temperature values of Sht25 sensor, because sometimes RF link is
weak from the node to gateway and there is the possibility of losing the data. In order to
prevent this loss, such a permanent storage was necessary in EEPROM. This 24AA64 has the
supply voltage from 1.8V to 5.5V and supports the I2C communication with clock frequency

28

3.3 Serial EEPROM Implementation

of 400KHz. It has 1 million erase cycles which is sufficient in this project. It can retain its
data over 20 decades[18]. The pin diagram of 24AA64 is shown in figure 3.9.

Figure 3.9: 24AA64 Pin diagram [18]

24aa64 is 8 pin IC. A0, A1 and A2 represent the address configurations of 24aa64 EEPROM
and make 8 possible addresses to access 8 EEPROMS. WP (write protection) pin 7 is used
to allow writing data in EEPROM when it is set to zero but no data can be written when it
is enabled. SDA (Pin 5) and SCL (Pin 6) are used for I2C communications with the pull-up
resistors. Vcc (Pin 8) and Vss (Pin 4) are used for the supply voltage and ground respectively.
It is also a low power consumption device, because in active state it draws current of 1 mA
and when it is in standby mode it draws 1 µA current.

3.3.1 Device and Memory addressing in EEPROM

The EEPROM addressing is started by first sending the start bits for I2C protocol and then
the slave address of EEPROM. The slave address of EEPROM consists of four control bits,
three address bits and the eighth bit indicates the writing or reading mode of EEPROM. The
device addressing is depicted in figure 3.10.

Figure 3.10: Device Addressing [18]

Whether data is written or read from the memory, it is necessary to address the memory cell
of EEPROM before writing or reading in that memory cell. This is described in figure 3.11.
After sending device address with either read or write mode, the address of the memory
location for reading or writing. As in 24aa64, EEPROM has 8192 unique addresses in it so
it requires 12 bits from A0 to A12 to access these memory cells while the other four bits are

29

3 Hardware Components and I2C Implementation

Figure 3.11: Memory location Addressing [18]

don’t care bits. The first byte to be sent after the device addressing is the higher address
byte and then the lower address as the second byte [18].

3.3.2 Write cycle in EEPROM

Data can be written in the memory cell of 24aa64 in two ways.

• Page write

• Byte write

3.3.2.1 Page write

In the page write operation of 24aa64 EEPROM, it is possible to write 32 bytes data in the
memory at once without the need for starting the I2C device address again and again in order
to send 32 bytes. Page write cycle is shown in figure 3.12.

Figure 3.12: Page Write Cycle [18]

From the above figure, it is clearly visible that we send only the start, control byte and device
address bits once and then the 32 bytes data can be written in the memory locations. After
sending 32 bytes, stop bits transmission are sent to finish this page write.

3.3.2.2 Byte write

In this project we are using byte write operation because this operation meets our requirement
to write byte data in EEPROM. Byte write cycle is shown in figure 3.13. The stop transmission
is generated to complete this byte write cycle after writing the data byte in the memory
location addressed by the address bits A0 to A12. It is recommended to give maximum delay
of 5msec after every byte write or page write [18].

30

3.3 Serial EEPROM Implementation

Figure 3.13: Byte Write Cycle [18]

3.3.3 Read cycle in EEPROM

24aa64 EEPROM provides three ways to read data from its memory location, which are
stated below.

• Current Address Read Method

• Random Address Read Method

• Sequential Address Read Method

3.3.3.1 Current Address Read Method

In the current address read method, a single byte can be read from the memory location of
EEROM after sending the device address and memory address bytes of that location. On
reading for the next byte from the EEPROM, it is not required to send the desired memory
address bytes because 24aa64 has the internal counter which stores the last accessed location
in EEPROM. So when the start transmission of the device in read mode is sent over I2C
interface, the counter points to the next memory location and the next byte can be read from
the memory. Upon every received byte acknowledgement, it is necessary to send the stop
bits. It is shown in figure 3.14.

Figure 3.14: Current Address Read [18]

3.3.3.2 Random Address Read Method

The random address read method is used to read the data byte from any random memory
address. The device address or control byte is sent following the start bits with the writing

31

3 Hardware Components and I2C Implementation

mode enabled, the two memory address bytes are sent after the device address acknowledge-
ment. Upon acknowledgement of the address bytes, the microcontroller again restarts the
start transmission of I2C with the control byte in reading mode. The EEPROM sends the
1 byte data to microcontroller from the addressed location of memory. After receiving the
byte, the microcontroller generates the stop transmission. This whole process can be easily
understood from the figure 3.15.

Figure 3.15: Random Address Read [18]

3.3.3.3 Sequential Address Read Method

Unlike random address read method, in the sequential address read method the acknowledge
bit is sent after receiving the first byte of data from EEPROM and then sequentially receives
the data bytes up to a given value as shown in figure 3.16.

Figure 3.16: Sequential Address Read [18]

The whole starting process is same in sequential address read like random read. This approach
has been used in this project to read the data from the memory, because more than one byte
was required to receive the data in one shot.

3.3.4 Demonstration of Timing Diagram on Oscilloscope

The timing diagram on oscilloscope for writing a single byte of value "H" in the EEPROM
location (0x0000) is shown in figure 3.17.
In the figure 17-a, start condition (S) is initiated by pulling the serial data line (SDA) line low
while the serial clock line (SCL) remains high at that time. Following the start condition, the
master sends the EEPROM address (1010000) and the write enabled bit (0). After addressing
the EEPROM, the high byte address (00) and low byte address (00) is transmitted to access

32

3.3 Serial EEPROM Implementation

(a) Single Byte Write in EEPROM

(b) continued:Single Byte Write in EEPROM

Figure 3.17: Oscilloscope Timing Diagram

the first memory location of EEPROM for writing data in it. The slave (EEPROM) gives
acknowledgement to the microcontroller by pulling SDA line low after receiving every byte
from the microcontroller. Total 27 clocks of SCL required to transmit three bytes of data to
the EEPROM. In the figure 17-b, the SCL line requires 9 clocks to write the character value
"H" (01010000) in the memory location of EEPROM. The transmission is terminated when
the rising edge of SDA is detected by the SCL line.

33

3 Hardware Components and I2C Implementation

3.3.4.1 Rise Time of Clock and Data

The rise time of SCL clock and data line SDA can be seen from the figure 3.18

Figure 3.18: Rise Time of SCL

The rise time of SCL and SDA with the values 822 ns and 964 ns respectively was measured
when writing a byte in EEPROM at a SCL frequency of 301.7Khz. The fall time of SDA with
the value 17.96 ns was observed.

3.3.5 Prevention of Overwriting data in EEPROM

When the sensor node is powered off after storing sensors data in the EEPROM, the EEPROM
retains all data permanently. But the problem arises when the sensor node is restarted again,
sensors data are written to the same locations in the EEPROM starting from the beginning
(overwritten data) instead of storing the sensor values from where it left before. This happens
because the program execution starts from the beginning and all the devices are initialized
again. To avoid such overwriting of data in EEPROM, two procedures were proposed.

• Find raw values (0xFF) in EEPROM memory cells

• Tracking of last accessed location in EEPROM

34

3.3 Serial EEPROM Implementation

3.3.5.1 Find raw values (0xFF) in EEPROM memory cells

By default, the value in all the memory cells of EEPROM is either 0xFF or 0x00. In 24aa64
EEPROM, the raw value of 0xFF lies in all the memory locations as shown in figure 3.19.

Figure 3.19: Raw Default Value in EEPROM

Overwriting of the sensor values in the memory can be prevented by finding the value 0xFF
in memory location, when this value is found it becomes the starting address to write the
next block of the sensor values ending with the last byte 0xFF as shown in figure 3.20.

Figure 3.20: Starting address of the next sensor data

The last byte 0xFF must be added with the sensor data block because if all the locations in
the EEPROM are filled with sensor values and the algorithm does not find any location with
0xFF value, it is not possible to write the sensor value furthermore. In this approach, the
algorithm always reads the locations of the EEPROM to find 0xFF in order to write sensor
values.

35

3 Hardware Components and I2C Implementation

3.3.5.2 Tracking of last accessed location in EEPROM

To prevent overwriting in EEPROM, tracking of last accessed memory location is also the
solution. In this case, the first two locations (0x0000 and 0x0001) in the memory cell of
EEPROM have been reserved for storing the address of the next memory location following
the last accessed memory location as shown in figure 3.21.

Figure 3.21: Magic Locations

When the sensor node restarts it first reads the first two reserved cells in the EEPROM,
which informs the node to store the sensor values in the EEPROM at the memory location
cell where it stopped before. This procedure has been implemented in the project because
of its faster computation than reading the memory every time to find the 0xFF value. In
the project, block size of 16 bits are stored in the memory and then the next corresponding
address is stored in the first two locations of EEPROM. Description of the block size of 16
bits will be explained in the coming chapters.

3.3.5.3 Data Storage in EEPROM

The data in the EEPROM is stored in a size of 16 bytes after taking two measurement values
from the Sensor nodes. Figure 3.22 shows the data storage pattern in EEPROM. The first
two locations (0x0000 and 0x0001) of EEPROM always informs the next starting address to
write the values in the EEPROM. The data in the other locations are described as below.

• Restart Node Status: 0x0002 cell has the Restart Node Status which informs whether
the Sensor node has been reset or not. Value "1" denotes reset state and "0" denotes
not reset state.

• RSSI Gateway value: 0x0003 location has the RSSI Gateway value which tells the
received signal strength indicator signal of Gateway when the Gateway addresses any
Sensor Node.

• Tmp100 Sensor data: 0x0004 and 0x0005 cells have the high byte and low byte value
of the temperature from Tmp100 respectively.

36

3.4 Battery Cells

• Sht25 sensor Temperature value: 0x0006 and 0x0007 cells have the high byte and low
byte value of the temperature from Sht25 respectively.

• Sht25 sensor Humidity value: 0x0008 and 0x0009 cells have the high byte and low byte
value of the humidity from Sht25 respectively.

The same sequence starts again from 0x000A location of the EEPROM.

Low Byte (Holds Next Starting Address)

High Byte (Holds Next Starting Address)

Restart Node Status

RSSI Gateway Value

High Byte Tmp100 Sensor

Low Byte Tmp100 Sensor

High Byte Sht25 Temperature

Low Byte Sht25 Temperature

High Byte Sht25 Humidity

Low Byte Sht25 Humidity

Restart Node Status

RSSI Gateway

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

0x0008

0x0009

0x000A

0x000B

0x0000

Figure 3.22: Data Storage in EEPROM

3.4 Battery Cells

Lithium 3V battery with a capacity of 850 mA has been used to power up the nodes in the
project. This battery has dimension of 14.5x25mm. This battery along with sensor node was
placed inside the housing.

37

3 Hardware Components and I2C Implementation

3.5 PCB Designing Of Interfaced Devices

For the interfaced devices such as Tmp100, Sht25 and EEPROM, two layered PCB (Printed
Circuit Board) with dimension of 26x42 mm was designed in the Eagle software. This software
can be downloaded free from the internet and it provides 2 layer PCB option on student version
which was sufficient in the project. Two PCBs were needed in the project for interfacing. First
PCB is to monitor the temperature inside the housing and the second to measure temperature
and humidity inside the banana pallet. So both circuits were made on a single PCB (26x42
mm) for the ordering of the PCB and then afterwards cut for separating them.

3.5.1 PCB Schematic Design

The schematic diagram of the two circuits made in the Eagle software are shown in figure
3.23 and figure 3.24..

Figure 3.23: First Board Schematic Diagram

Figure 3.24: Second Board Schematic Diagram

38

3.5 PCB Designing Of Interfaced Devices

In the first board Tmp100 sensor, EEPROM, two pull-up resistors and a bypass capacitor
are in the circuit. Two ten pin connectors are attached to the Wizzimote (Controller). The
6 pin molex connector used to supply the voltage, ground and I2C bus lines (SCL and SDA)
to the second board.
In the second board the Sht25 sensor must be outside the housing to measure the humidity
and temperature inside the banana pallet so separate board was needed for this sensor. The
6 pin molex connector is used to power up the sensor and driving the sensor by I2C bus lines.

3.5.2 PCB Board Design

The board design of PCB is shown in figure 3.25.

Figure 3.25: Board Diagram

The red line connections represent the upper layer on the PCB while the blue line connections
represent the lower layer. The numbered symbols represent the foot prints of the component
used.

1. Pull-up resistors foot print (package 0805)

2. 10 pin connector and its footprint were also developed in Eagle

39

3 Hardware Components and I2C Implementation

3. 24aa64 EEPROM foot print

4. Sht25 sensor foot print

5. Tmp100 sensor foot print

6. Molex 6 pin connector and the foot print was developed in Eagle

7. Capacitor foot print (package 0805)

3.5.3 Complete PCB design

The complete PCB layout diagram is shown in figure 3.26. The ground layer lies in majority
on the top surface area layer of PCB.

Figure 3.26: Complete Layout Diagram

The two PCB boards with the components soldered is shown in figure 3.27. The soldering of
Sht25 was performed in the IMSAS (Intitute for microsensors, actuators and systems) clean
room because the size of Sht25 sensor is 3x3 mm.

Figure 3.27: PCBs With Components

40

3.5 PCB Designing Of Interfaced Devices

1. Main PCB board

2. Second board

3. 24aa64 EEPROM

4. Tmp100 sensor

5. Sht25 sensor

6. Sht25 footprint was developed on the main PCB board, if required in the future

The Sensor node housing is shown in figure 3.28. Sht25 board has been glued to the right
wall of the sensor housing after drilling a small hole on it so that it can measure the outside
temperature and humidity.

Figure 3.28: Sensor Node Housing

41

4 DASH7 Alliance Protocol

This chapter gives a short description for the Dash7 and its alliance protocol (OSS-7). Dash7
alliance protocol has been used to send the data over RF link at a frequency of 433Mhz.

4.1 Dash7 Introduction

Dash7 stands for "Developer Alliance for standard harmonization of ISO 18000-7" and devel-
oped to increase the low power consuming wireless devices. Dash7 alliance protocol software
stack implementation has been used in the project and the Rf core modules of the CC430F5137
microcontroller is also configured according to the Dash7 protocol. Dash7 works on a BLAST
concept

• Bursty: The communication is done abruptly and can not transfer like audio or video
data.

• Light: It sends the light data with a packet size limitation of 256 bytes.

• Asynchronous: Transmission is done asynchronously.

• Transitive: Devices using Dash7 alliance protocol can be mobile and does not necessarily
need to be fixed.

Dash7 uses the frequency spectrum in the range of 433-434.97 Mhz in Europe[19]. Due to less
bandwidth, the high data rate transmission is not possible which is not a big concern in low
power wireless devices. Range of Dash7 communication depends on several factors mainly the
transmitted power or receiver sensitivity and the data rate transmission. High transmitted
power increases the range but power consumption of the device also increases while the high
data rate transmission becomes the cause for the reduction of range. 433.16 MHz spectrum
has been configured in the Rf radio core of microcontroller whereas the antenna transmission
power is set to 10 dBm (Decibel milli watts) which is equal to 10 mW. The default data rate
in the Dash7 module is set to 55 Kbps and can be changed accordingly.
The communication mode implemented in the project is Pull based in which the Base Station
(Gateway) sends the query to the sensor node with its device id and the accessed node replies
accordingly in response to the query of the Base Station. Dash7 supports different network
topologies which can be used such as Star, Mesh and Tree. In the project, Star network
topology has been implemented as shown in figure 4.1.

42

4.2 Dash7 Software Stack

Figure 4.1: Star Topology

4.2 Dash7 Software Stack

OSS-7 (Open Source Stack for Dash7) is the software stack implementation of Dash7 and it
is based on OSI layers as shown in figure 4.2.

Figure 4.2: OSS-7[20]

In addition with the OSI layers, there are two more layers HAL (Hardware abstract layer)
and Framework layer. In HAL the hardware APIs are implemented such as Timer, I/O, Uart,
Led and button etc. One has to choose this HAL according to its microcontroller platform,
for example WizziMote platform hardware has been selected in the project. Framework layer
is used for logging, queuing and timer event function. Both these layers are available to use

43

4 DASH7 Alliance Protocol

in any OSI layer[20]. All the configurations of the radio core like transmitting or receiving
data have been set in the Physical layer of OSS-7.

4.3 Dash7 Applications

Dash7 can be used in many applications but here are presented few of them.

4.3.1 Home Automation

High frequency signal is obstructed by the obstacle, but the Dash7 quality of penetrating
walls makes it a good choice in the home automation system.

4.3.2 Parking Guidance

It can be used to guide the driver about the vacant parking slots in the parking area instead
of searching the parking slot one by one. It can be done by placing the sensor in the parking
slot.

4.3.3 Automotive Senors

Dash7 has already been employed in the automotive sector like tire pressure monitoring
system (TPMS).

4.3.4 Military

Dash7 is also used in the military applications and in the future it can also be used to find
the friendly personnel nearby by sending queries.

4.4 Dash7 Version

The Dash7 module used in the project was pulled on 18 June, 2014 from the official oss-
7 Git Repository at https://github.com/CoSys-Lab/dash7-ap-open-source-stack.git. Master
branch of this version has been used in the project.

44

5 Gateway and Node Communication

In this chapter, the detailed description of the communication between the Gateway and
Sensor node will be explained.

5.1 Communication Overview

In the project five sensor nodes have been used and each of them is interfaced with sensors
(Tmp100 and Sht25) and EEPROM. Each sensor node has its own unique device id. The
gateway addresses each sensor node with its device id and the corresponding node responds
to the request query. The communication between gateway and sensor node is performed
with the help of Dash7 Alliance protocol. Figure 5.1 shows an overview of the communication
between the gateway and sensor nodes. Online data measurements are read by the gateway
from all the nodes.
It can be seen in figure 5.1, the gateway first sends the request query to Node Id 15 and then
waits maximum 600 ms for the answer from Node 15. The Node 15 receives the request from
the gateway and sends the current value measurements of interfaced sensors, by addressing
through I2C interface, along with other appended data bytes which will be described later.
The data from the interfaced sensors along with the gateway rssi value and Restart Node
Status is also written to the EEPROM. The timer in Node 15 is set to one minute after
sending the data to the base station, which implies that the next current measurenemt value
of the sensors can be taken after one minute from Node 15. The gateway sends the next
request query to Node Id 20, which responds it by sending the stored EEPROM data of 16
bytes and sets the timer to 3 sec. Node Ids 21, 10 and 43 follows the same procedure by
sending 16 bytes of the saved EEPROM data upon receiving a request from the gateway.
Due to radio receive time of 600 ms in the gateway, the gateway sends the next query to each
node after every 3 seconds (600ms x 5) in case of five nodes. This becomes the reason to set
the timers of Nodes 20, 21, 10 and 43 to three seconds which make them sleep in this duration
and save the power consumption of the nodes. When the sequence of sending query request
repeats at Node Id 15 as marked in the figure also, the data is not sent from the Node 15 to
the gateway because of not timing out of 1 minute set in its timer before. The gateway then
sends the next request to Node Id 20 and gets the response from it.
During the testing of the communication between nodes and gateway in the project, different
radio receive time of the gateway were set such as 300 ms, 600 ms and 1200 ms after sending

45

5 Gateway and Node Communication

Gateway Communication Sensor Node

Send Query (Node 15)

Data Rececived

Send Query (Node 20)

Data Rececived

Send Query (Node 21)

Data Rececived

Send Query (Node 10)

Data Rececived

Send Query (Node 43)

Data Rececived

Node 20(send EEPROM data and set
timer=3 sec)

Request Sent

Data from Node 15

Request Sent

Data from Node 20

Request Sent

Data from Node 21

Request Sent

Data from Node 10

Request Sent

Data from Node 43

Node 21(send EEPROM data and set
timer=3 sec)

Response wait (max 600 ms)

Response wait (max 600 ms)

Response wait (max 600 ms)

Node 10(send EEPROM data and set
timer=3 sec)

Response wait (max 600 ms)

Node 43(send EEPROM data and set
timer=3 sec)

Response wait (max 600 ms)

Node 15(send current data and set
timer=1 min)

Send Query (Node 15) Node 15(send current data and set
timer=1 min)Response wait (max 600 ms)

No Data(timer 1 min not completed)

Request Sent

Send Query (Node 20)

Data Rececived

Node 20(send EEPROM data and set
timer=3 sec)

Request Sent

Data from Node 20

Response wait (max 600 ms)

 Sequence Repeat

continues

Figure 5.1: Communication Overview

the request to the nodes to check the nodes response with their increased distance from the
gateway. The waiting or sleep time of node has to be corrected according to the gateway
interval in case of sending EEPROM data to the gateway.

5.2 Detailed Description of the Communication

5.2.1 Gateway State Machine

The Gateway module implemented in the project acts as a State Machine as shown in figure
5.2. When the gateway is powered on, timer event function of Dash7 module (d7aoss) is
programmed to 1 msec. The controller goes in low power mode for 1 msec and after 1 ms it
jumps to the state 1.

5.2.1.1 State 1

The state 1 of the gateway is responsible for sending the queries to the sensor nodes, receiving
the data from them and process the data. The gateway module accesses the Sensorstruct
module in the software to get the device id of the sensor node for sending request. Sensorstruct

46

5.2 Detailed Description of the Communication

State 1

State 2

State 3

After 1 ms
After 1 ms

Power ON

Start

Send Query
to Node

Set timer
event=600ms

Radio Rx On

Data Received
from Node ?

Finish

Process Data

Finish

No Yes

Start

Radio Rx OFF

Set timer
event = 1ms

Finish

Start

Radio Rx Off

Start

Send Data to
PC (UART)

Finish

Tx Callback

Gateway State Diagram State 1 State 2 State 3

Figure 5.2: Gateway state Diagram

module has a predefined storage of all sensor nodes Ids. The gateway sends the data request
to the sensor node with its device id and then the timer event is set to 600 ms . The timer
event in state 1 is set by taking important considerations such as the time required for the
sensor node to get the sensor values from the interfaced sensors through I2C communication,
time required to write the values in the EEPROM through I2C communication and signal
latency when the sensor node distance is increased from the gateway. The tx call back function
in the Dash7 module informs that the request has been sent to the sensor node and brings
the controller in the active mode. The radio of the gateway is turned on in receiving mode
with the interrupt enabled for preparing it to receive the data from the sensor node and the
controller goes in sleep mode. If the data is not received from the sensor node within 600
ms, the gateway changes its state and goes to the next state but on the other side if the data
is received from the sensor node, the gateway processes the data by adding the RSSI value
of sensor node and stores it in a data buffer size of 20 bytes. Sending and receiving of data
through Dash7 module has been programmed to 20 bytes in the project. The gateway is able
to receive the current values and the previously stored values in the EEPROM of the sensors

47

5 Gateway and Node Communication

in real time. The structure of data blocks received from the current measurements of sensor
node is shown in figure 5.3.

Node Rssi

Memory Read Status

Restart Node Status

RSSI Gateway Value

High Byte Tmp100 Sensor

Low Byte Tmp100 Sensor

High Byte Sht25 Temperature

Low Byte Sht25 Temperature

High Byte Sht25 Humidity

Low Byte Sht25 Humidity

1

Block Counter

Sensor Node Id

A
p

p
e

n
d

e
d

 D
ata

T
ra

n
sm

itted
 D

a
ta

 Fro
m

 Se
n

so
r N

o
d

e

Se
n

so
r v

alu
es+

R
SSI G

a
te

w
a

y+
R

esta
rt N

o
d

e
 Statu

s

Figure 5.3: Data Received from Sensor Node

As it was discussed before, the sensor node also sends some appended data which are the the
first four data bytes or blocks in the complete block. These four data bytes are described
below.

Sensor Node Id: It is the device identification number or device id of the sensor node.

Block Counter: Block counter informs the gateway about the number of blocks already
sent by the sensor node.

Memory Read Status: Memory read status informs that the data received from the sensor
node is either current or from EEPROM.

• 0: Current values of sensors

• 1: Data obtained from the EEPROM

Node RSSI: The raw value is obtained in the fourth data block received from the sensor
node. The gateway modifies only this data by writing the node RSSI in it.

48

5.2 Detailed Description of the Communication

The sensor values obtained from the sensor node in figure 5.3 is current data measurement
because of its size of 12 bytes. When the gateway receives the EEPROM data of any sensor
node, the total blocks received from the sensor node consists of 20 bytes (16 bytes from
EEPROM+4 bytes appended data). After completion of 600 ms, the timer event is triggered
which causes to change the state from 1 to 2.

5.2.1.2 State 2

In state 2, radio of gateway which is in receiving mode is turned off and timer event is set to
1 ms. After 1 ms, timer event triggers and the state changes.

5.2.1.3 State 3

In state 3, the data obtained from the sensor node is sent to a PC through UART at a baud
rate of 115200. The timer event was already configured to 1 ms which stays valid in state 3
too and becomes the reason to change the state from 3 to 1 again after 1 ms. The complete
module has been implemented in low power mode and the watchdog timer has also been used
to reset the device in case of any defect in the system or interfaced sensors.

5.2.2 Sensor Node Operation

The sensor node working in response to gateway request can be seen from figure 5.4. After
turning on the power of sensor node, the radio is turned on in receiver mode so that it can
catch the query request from the gateway. The node remains in low power mode until it
receives any request. If the request is not received for 4 min and 16 sec, the watchdog timer
resets the device.
When the sensor node receives the gateway request, the watchdog timer is also kicked or reset.
The first responsibility of sensor node is to match its own device id with the id which is sent
by the gateway in query request. If the device id is not matched, sensor node is again put into
the receiving mode to receive the next query request from the gateway. In case of matched id,
restart node status is monitored. In case of node restart, the sensor node is programmed in
such a way that it sends all sensor data written into the EEPROM to the gateway in chunks
of 16 bytes. After sending every 16 bytes of data from memory, controller goes in sleep mode
for 3 sec.
When the stored data is completely read from the memory, the sensor node starts to address
its interfaced sensors and sends the current measurement values of the sensors to the gateway
upon its request. The measurement values are also saved in the EEPROM. After sending
current values of the sensors to the Gateway, the timer keeps the controller in sleep mode for
1 minute.

49

5 Gateway and Node Communication

Power ON

Radio Rx_Start

Gateway REQ
Received

Node ID
Matched ?

Node Reset ?

Data In
Memory ?

Send 16 bytes
Memory Data

L.P.M Delay
 3 sec

Get current
Data from

Sensors

Store in
 EEPROM

Send Sensor
Data

L.P.M Delay
1min

Data All
Read From
Memory?

Send 16 bytes
Memory Data

L.P.M Delay
 3 sec

Get Current
Data from

Sensors

Store in
EEPROM

Send Sensor
Data

L.P.M Delay
1min

No Yes

No Yes

Yes No YesNo

Figure 5.4: Sensor Node Operation

5.3 Software Modules

5.3.1 List of All Software Modules

Figure 5.5 shows the files which have been modified in the software and figure 5.6 shows the
newly created modules in the software.

• Sensor Struct Module: It is the definition of structure to hold sensor data.

• Main Slave: It handles the gateway request and takes subsequent action for the response.

• Gateway: It is responsible for sending query to the nodes and receiving reply from the
nodes as a response.

• Transmit RF data: It sends the data through Dash7 module.

50

5.3 Software Modules

sensorStruct.c sensorStruct.h

MainSlave.c

Gateway.c

txRF_data.c

rxRF_data.c

Source Files Header Files

Sensor Struct Module

Main Slave

Gateway

Transmit RF data

Receive RF data

Figure 5.5: Modified Files

• Receive RF data: It receives the data through Dash7 module.

sensor_communication.c sensor_communication.h

sht25.c sht25.h

tmp100.c tmp100.h

eeprom.c eeprom.h

i2c.c i2c.h

Source Files Header Files

Sensor Communication
Module

SHT25 Module

TEMP100 Module

EEPROM Module

I2C Module

Figure 5.6: Newly Created Software Modules

• Sensor Communication Module: It is used as a interface to access the interfaced sensors
and EEPROM.

• SHT25 Module: It is a Sht25 sensor driver for getting temperature and humidity mea-
surements.

• TMP100 Module: It is a Tmp100 sensor driver for getting measurement.

• I2C Module: It is a I2C driver to send command over the I2C bus such as connected
device address and its operating commands.

51

5 Gateway and Node Communication

5.3.2 Software Modules for Getting Current Sensor Measurements

Figure 5.7 describes the software modules implemented to get the real time current values of
the interfaced sensors (Sht25 and Tmp100) from the nodes.

sensorstruct.c

sensor_communication.c

MainSlave.c

tmp100.c sht25.c

Gateway Request

Data Sent

1

4

3

eeprom.c

i2c.c i2c.c i2c.h

2

Figure 5.7: Software Modules

The numbered circled markings in the figure denotes the execution process for getting the
current measurements of the interfaced sensors.

First Step: The Gateway sends the request to the Sensor Node.

Second Step: The Main Slave module receives the gateway request and accesses the Sensor
communication module in case of matched device id. Sensor communication module can
access all the interfaced devices such as Tmp100, Sht25 and EEPROM. Tmp100 module
configures the Tmp100 sensor in 10 bit resolution and reads the temperature values with
the help of I2C module while the SHT25 module reads the temperature and humidity values
from the Sht25 sensor using the same I2C module. Current measurement values of the
Tmp100 and Sht25 sensors are then forwarded to the Sensor communication module with
a size of 6 bytes, which further adds RSSI of Gateway and Restart node status data with
the current sensor measurement values, making it a total data of 8 bytes. The same 8 bytes
of data is sent to the Main Slave module and also stored in a 16 byte buffer in the Sensor
communication module. After one minute, when this buffer is completely filled then 16 byte

52

5.3 Software Modules

data is written in the EEPROM through EEPROM module. In the software program, data
is always stored in the EEPROM with a size of 16 bytes after every two minutes. EEPROM
module is used for setting the number of bytes to be written in the EEPROM or read from
the EEPROM. Before writing any data in the EEPROM, EEPROM module also reads the
first two locations in the EEPROM to find the next starting address to write data in it. All
this process takes place by making use of I2C module.

Third Step: Sensor struct module in the software adds some more data to the sensors data
such as sensor node id, block counter, memory read status and Node Rssi. The same was
also described in figure5.3.

Fourth Step: Main Slave module sends all the data to the gateway.

5.3.3 Software Modules for Getting EEPROM values

Figure 5.8 describes the software modules implemented to read the saved values of the sensors
in the EEPROM when the sensor node is reset.

sensorStruct.cMainSlave.c
Gateway Request

Data Sent

1

4

3

2

eeprom.c

i2c.c

Figure 5.8: Software Modules

First Step: The gateway sends the request to the sensor node.

Second Step: If the device id is matched, the Main Slave module reads the first two cells in
the memory. The EEPROM is considered to be empty when the values on both cells make

53

5 Gateway and Node Communication

0xFFFF (raw values). On the contrary if the combined value of both locations is other than
0xFFFF, gives an indication of some values already written in the EEPROM before. The
values are read from the EEPROM in a block size of 16 bytes.

Third Step: Sensor struct module appends four more bytes to the 16 byte received from
the EEPROM.

Fourth Step: Main Slave module sends the data to the Gateway. This cycle will continue
until the values from the EEPROM are completely read.

5.4 Offline Mode

Offline mode has also been developed also for Sensor nodes. In the offline mode, sensor
nodes take reading from the interfaced sensors after 1 minute without any request from the
gateway. Data is saved in the EEPROM also after every two minutes of readings. This mode
does not make use of the Dash7 module. Low power mode 3 of the CC430F5137 has been
programmed in this mode. The saved EEPROM readings of sensor nodes in the offline mode
can be read later by the gateway after programming each node again with the Dash7 module.
The structure of the values saved in the EEPROM is shown in figure 5.9.

Restart Node Status

Offline Mode Status

High Byte Tmp100 Sensor

Low Byte Tmp100 Sensor

High Byte Sht25 Temperature

Low Byte Sht25 Temperature

High Byte Sht25 Humidity

Low Byte Sht25 Humidity

Se
n

so
r v

alu
es +

R
esta

rt N
o

d
e

 Statu
s+

O
fflin

e
 M

o
d

e
 Stau

s

EEPR
O

M
 SA

V
ED

 D
A

TA

Figure 5.9: Offline Mode Data in EEPROM

The data structure stored in the EEPROM remains same as described in figure5.3 except
the second byte. The second byte of EEPROM data in the offline mode is the Offline Mode
Status which gives an indication that the data stored in the EEPROM belongs to the offline
mode. A constant number of 88 has been assigned for this status byte in the software for the

54

5.5 Java Software Modification

easy identification in the log text file generated, when the gateway accesses the node in real
time.

5.5 Java Software Modification

Java software was used in PC to get the serial data from the UART of microcontroller and
to save the data in a text file after converting the raw values of the sensors in readable form.
Microcontroller sends data on UART with a length of 20 bytes. Some modifications were
needed in the class named as SensorData, which is shown in figure 5.10.

composeFrame

analyzeFrame

realSensorValues

integerToString

doubleToString

convertToSixValues

printAndSave

Class SensorData

Figure 5.10: Java Class Modification

composeFrame: It is a function which saves the 20 bytes data received in the buffer of
InputStream class in a byte array of 20 bytes.

55

5 Gateway and Node Communication

analyseFrame: This function is used to sort the 20 bytes data according to its type, such
as merging the two bytes data of Tmp100 temperature in an Integer data type.

realSensorValues: This function converts the raw values of the Tmp100 and Sht25 sensors
into real values by the specified formula mentioned in the sensors’ data sheet.

integerToString: This function converts all individual integers data to string so that the
data can be stored in a text file.

doubleToString: It is used to convert the double values of Tmp100 and Sht25 into string
for saving it in a text value.

convertToSixValue: This function limits the values of Tmp100 and Sht25 sensors to max-
imum six digit.
printandSave: Printing all the values on console and saving them in a log text file is possible
by this function.

5.5.1 Log File Data Presentation

The pattern of the data saved in the log text file generated in a Java program is shown in
figure 5.11.

20 14 0 -64 0 -65 3.0 3.3220 49.931

21 15 0 -74 0 -75 2.75 2.8286 51.838

15 17 0 -71 0 -74 2.5 3.0324 33.520

43 15 0 -75 0 -76 2.75 3.0002 52.044

10 15 0 -75 0 -76 3.0 2.9037 78.121

1 2 3 4 5 6 987

Figure 5.11: Log File Data

• 1: Device Id

• 2: Block Counter

56

5.6 IDE for the Software

• 3: Memory Read Status ("0"= Real Data Measurement and "1"= Data from EEPROM)

• 4: Node RSSI (RSSI value received at the Gateway from the Node)

• 5: Restart Node Status ("0"= Node not reset and "1"= Node reset)

• 6: Gateway RSSI (RSSI value received at the Node from the Gateway)

• 7: Tmp100 Temperaure (in °C)

• 8: Sht25 Temperaure (in °C)

• 9: Sht25 Humidity (% relative humidity)

5.6 IDE for the Software

Code Composer Studio IDE with version number 6.0.1 has been used in the project for
the software to develop and debug. This IDE is provided by the Texas insrtument and it
supports all Texas Instrument microcontrollers. This software can be downloaded free of cost
from website http://processors.wiki.ti.com/index.php/Download_ CCS

5.7 Code at SVN

All the code developed and modified in the project is available on the SVN repositiry. The
destination paths of the software modules implemented in the Code Composer Studio and
Eclipse are mentioned below.

https://icia.de/svn/students/faisal/RealDataSoftware
https://icia.de/svn/students/faisal/Offlinemode
https://icia.de/svn/students/faisal/java

57

6 Testing and Measurements

This chapter deals with the testing and measurements of the sensor nodes with the gateway
and the analysis of their obtained results. Testings were carried out in the building as well as
outside in an open area field.

6.1 Testing in Building

The first test was carried out in the building by placing all five sensor nodes and the gateway
in the rooms. The ground floor lab rooms of IMSAS department (University of Bremen) were
used for this testing. Figure 6.1 shows the sensor nodes and gateway placement in different
rooms. All the four rooms are in one row. The thickness of the room wall connecting to other
room is approximately 0.16 m.

Gateway ID-15 ID-20 ID-21 ID-10 ID-43

Room 1
OST-0140

Room 2
OST-0150

Room 3
OST-0160

Room 4
OST-0170

0.16m

0.16m

0.16m

M
ac

h
in

e
ry

1m

2.1m

1.1m
2.3m

2.4m 1.85m

2.9m

2.1m

4.8m

0.9m

Distance from
Gateway

 ID-15= 2.1 m
 ID-20= 5.7 m

 ID-21= 10.1 m
 ID-10= 15.2 m
 ID-43= 20.1 m

Figure 6.1: Testing in Building

Room 1: It is named as OST-0140, gateway and Node Id 15 were placed in this room. Node
Id 15 has a distance of 2.1 m from the base station.

Room2: The room 2 is OST-0150 and Node Id 20 was positioned in it at a distance of 5.7
m from the gateway.

Room3: The room 3 is OST-0160 and Node Id 21 was placed behind a heavy metal machine
in this room at a distance of 10.1 m from the gateway.

58

6.1 Testing in Building

Room4: This room is OST-0170 and two sensor nodes having Ids 10 and 43 were positioned
in the room at a distance of 15.2 m and 20 m respectively from the gateway.

6.1.1 Test One

In the first test of seven minutes, the radio of the gateway was kept in receiving mode for
300 ms after sending the request to each sensor node, which implies that the gateway has
only 300 ms to get the required data from the requested sensor node. Five sensor nodes used
in the testing so each node gets the next request from the gateway after every 1.5 seconds
(5x300ms). The values obtained per sensor node is shown in figure 6.2.

Sensor ID 15 Sensor ID 20 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

1

2

3

4

5

6

7

8

9

10

Figure 6.2: Number of Packets Received (Test 1: Setting One)

As shown in figure 6.2, two packets were received from the sensor Node Id 43 and three from
Id 10 while the complete seven packets were received from other nodes. Sensor Node with
Id 10 was positioned at a metal surface which is also a factor of receiving less packets from
this node. The gateway has a very short time to receive the values from the sensor nodes
because after addressing each Sensor node it switches to receive mode for a duration of 300 ms
to get the response from node, while the node has to take measurements from its interfaced
sensor, store the measurement in the EEPROM and respond the gateway by sending the
measurements within 300 ms.
Due to less receiving packets at the gateway, Node Id 43 was relocated in the same room at a
distance of 17.2 m from the gateway and the metal surface was removed from the base of the
Node Id 10. Readings were observed for 21 minutes and the values received per sensor node
is shown in figure 6.3.

Significant improvement is visible from figure 6.3 regarding with the packets received at the
gateway terminal. Only 2 packets were lost from Node Id 10 and one from Node Id 21.

59

6 Testing and Measurements

Sensor ID 15 Sensor ID 20 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

5

10

15

20

25

Figure 6.3: Number of Packets Received (Test 1: Setting Two)

6.1.1.1 Temperature values from Tmp100 and Sht25

The temperature values of Tmp100 inside the housing and outside temperature values
recorded from Sht25 of each sensor node is shown in figure 6.4.

Time in Minutes
0 2 4 6 8 10 12 14 16 18 20

T
m

p1
00

 R
ea

l V
al

ue
s

[°
C

]

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

ID 15
ID 20
ID 21
ID 10
ID 43

(a) Tmp100 Values
Time in Minutes

0 2 4 6 8 10 12 14 16 18 20

S
H

T
25

 T
em

pe
ra

tu
rt

e
C

ur
re

nt
 V

al
ue

s
 [°

C
]

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

ID 15
ID 20
ID 21
ID 10
ID 43

(b) Sht25 Values

Figure 6.4: Temperature Values (Test 1: Setting Two)

The plot depicts slightly different temperature readings, inside the housing and outside the
housing, in each room. Tmp100 values inside the housing of each Sensor node remain constant
because the resolution of this sensor was set to 0.5°C. On the other side values from the Sht25
sensors, with resolution of 0.01°C, show very smooth changes of the outside temperature.

6.1.1.2 Humidity Values

Humidity readings obtained from each sensor node can be seen in figure 6.5. Node Id 15, in
room 1, has the highest humidity values among other sensor nodes.

60

6.1 Testing in Building

Time in Minutes
0 2 4 6 8 10 12 14 16 18 20

S
H

T
25

 H
um

id
ity

 C
ur

re
nt

 V
al

ue
s

 [°
C

]

26

28

30

32

34

36

38

ID 15
ID 20
ID 21
ID 10
ID 43

Figure 6.5: Humidity Values (Test 1: Setting Two)

6.1.1.3 RSSI values

The RSSI value of each node with respect to their distances from the gateway is displayed in
figure 6.6.

Distance In Meter From Gateway
2.1 5.7 10.1 15.2 17.2

N
od

e
R

S
S

I V
al

ue

-90

-80

-70

-60

-50

-40

-30

-20

ID 15
ID 20
ID 21
ID 10
ID 43

Figure 6.6: Node RSSI Values (Test 1: Setting Two)

The pattern of RSSI values illustrate that the increasing distance of sensor nodes from gateway
cause the value of RSSI to decrease. From the above figure, it can be seen that the lower
RSSI values were received from Node Ids 21, 10 and 43. Node Id 10 has more decreasing
value of RSSI than Node Id 43, although Node Id 43 has the largest distance of 17.2 m from
Gateway in comparison to Id 10.

6.1.1.4 Correspondence Between Gateway and Node RSSI

For every node measurements, the node and gateway RSSI values are nearly symmetrical.
Figure 6.7 shows the similarity of the Gateway and Node RSSI values.

61

6 Testing and Measurements

Gateway RSSI Value
-80 -70 -60 -50 -40 -30 -20

N
od

e
R

S
S

I V
al

ue

-90

-80

-70

-60

-50

-40

-30

-20

ID 15
ID 20
ID 21
ID 10
ID 43

Figure 6.7: Correspondence between Gateway and Node RSSI (Test 1: Setting Two)

6.1.1.5 Mean and Standard Deviation Of RSSI

The mean and standard deviation of RSSI values of each node can be seen in figure 6.8. Node
Id 10 has the largest deviation of 7.04 from its mean. There can be several factors for getting
such a behaviour from Node Id 10 such as its placement and more reflections of signal in the
lab room.

15

21

43

20

10

-32.43

-60.90

-62.33

-43.33

-64.58

2.58

2.94

2.82

2.01

7.04

Node Id Mean Deviation

Figure 6.8: Mean and Standard Deviation (Test 1: Setting Two)

6.1.2 Test Two

In this test, some modifications were made such as Tmp100 resolution was changed to 0.25°C
in every sensor node, Node Id 43 again placed at a location of 20.1 m from the gateway and
the radio of the gateway set to 600 ms in receive mode after sending the request to the Node.
The receive time of the gateway was increased due to increased resolution of Tmp100 and to
check Node 43 response at a distance of 20.1 m from the gateway. Due to this increased time,
each sensor node gets the query request from the gateway after every 3 seconds (5x600ms).
The testing was performed for 20 minutes as shown in figure 6.9.

62

6.1 Testing in Building

Sensor ID 15 Sensor ID 20 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

5

10

15

20

25

Figure 6.9: Number of Packets Received (Test 2)

In this mode, no packets were lost from any Sensor Node and the Gateway was able to receive
the packets from Node Id 43 too at a distance of 20.1 m from the Gateway due to increased
radio receive time. Stored data from the EEPROM was also read in this test without any
loss of packet.

6.1.2.1 Temperature Values from Tmp100 and Sht25

Figure 6.10 displays the temperature chart of Tmp100 and Sht25 sensors of sensor nodes.

Time in Minutes
0 2 4 6 8 10 12 14 16 18 20

T
m

p1
00

 R
ea

l V
al

ue
s

[°
C

]

18

19

20

21

22

23

24

25

ID 15
ID 20
ID 21
ID 10
ID 43

(a) Tmp100 Values
Time in Minutes

0 2 4 6 8 10 12 14 16 18 20

S
H

T
25

 T
em

pe
ra

tu
rt

e
C

ur
re

nt
 V

al
ue

s
 [°

C
]

18

19

20

21

22

23

24

25

ID 15
ID 20
ID 21
ID 10
ID 43

(b) Sht25 Values

Figure 6.10: Temperature Values (Test 2)

The increased resolution of Tmp100 can be clearly seen from the figure 6.10(a). Small varia-
tions of values are visible from the temperature graph of inside and outside the housing.

63

6 Testing and Measurements

6.1.2.2 RSSI values

The RSSI values of the nodes with their respective distances and its correspondence with the
gateway is shown in figure 6.11

Distance In Meter From Gateway
2.1 5.7 10.1 15.2 20.1

N
od

e
R

S
S

I V
al

ue

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

ID 15
ID 20
ID 21
ID 10
ID 43

(a) Node RSSI values
Gateway RSSI Value

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20

N
od

e
R

S
S

I V
al

ue

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

ID 15
ID 20
ID 21
ID 10
ID 43

(b) Gateway and Node RSSI

Figure 6.11: RSSI Values (Test 2)

In this test also, majority of RSSI values of Node Id 21, 10 and 43 lie in the same region and
Node Id 10 has the lowest RSSI value. The symmetrical values of the gateway and nodes
RSSI were also found in this test.

6.1.2.2.1 Mean and Standard Deviation Of RSSI

The mean and standard deviation of RSSI values can be seen in figure 6.12

15

21

43

20

10

-25.80

-55.60

-55.60

-45.45

-57.70

1.67

1.54

1.19

1.96

2.15

Node Id Mean Deviation

Figure 6.12: Mean and Standrad Deviation (Test 2)

Better RSSI values are obtained in this test as compared to test 2. The overall trend of RSSI
is decreasing with the distance except the Node 10 which has the highest RSSI mean value
and standard deviation.

64

6.2 Testing In an Open Field

6.2 Testing In an Open Field

In order to examine RSSI values and the range of sensor nodes, testing was also performed
in an open field to get a larger area for the test. All sensor nodes and gateway were mounted
50 cm above on wooden sticks to avoid possible interface from the ground.

6.2.1 First Test

Setting One: In this test, gateway was positioned at a fixed point in an open field and all
sensor nodes were positioned at a distance of 10 m from the Gateway as shown in figure 6.13

(a) Gateway with PC (b) Sensor Nodes

Figure 6.13: Complete Setup

Figure6.14 shows the number of packets received in a testing of 13 minutes. No dropping of
packets from any Sensor node is clearly visible from the figure.

Sensor ID 15 Sensor ID 20 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

5

10

15

Figure 6.14: Number of Packets Received (Outside Test 1: Setting One)

65

6 Testing and Measurements

6.2.1.1 Mean and Standard Deviation Of RSSI

There were no major differences of the RSSI values obtained from each node at a distance of
10 m from the gateway. The mean and standard deviation is displayed in figure 6.15

15

21

43

20

10

-57.85

-55.85

-55.31

-57.54

-55.38

2.41

1.62

1.44

1.27

1.76

Node Id Mean Deviation

Figure 6.15: Mean and Standard Deviation (Outside Test 1: Setting One)

Setting Two: The purpose of this test is to relocate each sensor node away from the base
station by every 10 meter steps in a row to check its range. This test was conducted for
14 minutes. The sensor nodes positioning with respect to the gateway and their readings
received is shown in figure 6.16.

15

21

43

20

10

Node Id Distance from Gateway

50 meter

10 meter

20 meter

30 meter

40 meter

(a) Sensor Node Position

Sensor ID 15 Sensor ID 20 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

5

10

15

(b) Number of Packets Received

Figure 6.16: Sensor Positions and Received Readings (Outside Test 1: Setting Two)

Packets were lost from the Node Ids 21, 10 and 43. Only 2, 8 and 9 packets were received
from Node Id 10, 21 and 43. The behaviour of their RSSI values is shown in figure 6.17.
Plot depicts the decrease in RSSI value with their increasing distance from the gateway. The
lowest node RSSI value received is -75 dB of Id 10 whereas the least gateway RSSI value
received at Node Id 10 is -78 dB. There can be several factors for receiving less packets from
other nodes such as the disturbance and noise from the environment. Signal latency can also
be a factor for receiving less packets.

66

6.2 Testing In an Open Field

Distance In Meter From Gateway
10 20 30 40 50

G
at

ew
ay

 R
S

S
I V

al
ue

s
of

 L
os

t P
ac

ke
ts

-80

-75

-70

-65

-60

-55

-50

ID 15
ID 20
ID 21
ID 10
ID 43

(a) Node RSSI values
Gateway RSSI Value

-80 -75 -70 -65 -60 -55 -50

N
od

e
R

S
S

I V
al

ue

-80

-75

-70

-65

-60

-55

-50

ID 15
ID 20
ID 21
ID 10
ID 43

(b) Gateway and Node RSSI

Figure 6.17: RSSI Values (Outside Test 1: Setting Two)

To get the better understanding about the loss of packets from the nodes. EEPROM data
was read from the Node Ids 10, 21 and 43 after the test. It was found out that the total
readings of 14 minutes were saved in the EEPROM of all sensor nodes. The Gateway RSSI
values stored in the EEPROM of the lost packets from the sensor Nodes 10,21 and 43 and
their mean values are displayed in figure 6.18. It can be seen that the gateway RSSI values
received at the nodes were in the range of -78 to -88 dB verified from the EEPROM stored
values of the lost packets.

Distance In Meter
30 40 50

G
at

ew
ay

 R
S

S
I V

al
ue

(E
E

P
R

O
M

)

-88

-86

-84

-82

-80

-78

-76

ID 21
ID 10
ID 43

(a) Gateway RSSI of lost packets

21

43

10

-84.50

-85.67

-84.67

1.29

4.41

3.02

Node Id Mean DeviationDistances

30 m

40 m

50 m

(b) Mean and Standrad Deviation

Figure 6.18: Gateway RSSI Values Of Lost Packets (Outside Test 1: Setting Two)

Setting Three: To examine the RSSI values further more, positions of Node Ids 15 and 20
were changed while the position of all other nodes kept same in ten minutes reading as shown
in figure 6.19.

67

6 Testing and Measurements

15

21

43

20

10

Node Id Distance from Gateway

50 meter

60 meter

70 meter

30 meter

40 meter

Figure 6.19: Sensor Node Positions (Outside Test 1: Setting Three)

No packets were received from Node Id 20 at 70 meter but all real time measurements observed
from Node 15 even at 60 m. The reading pattern from each node is shown in figure6.20.

Sensor ID 15 Sensor ID 20 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

5

10

15

Figure 6.20: Number of Packets Received (Outside Test 1: Setting Three)

The readings were strange according to their distances from the Gateway. Figure 6.21 illus-
trates the mean RSSI values of nodes. For the lost packets of all nodes, EEPROM values
were again read and most of their RSSI values were found in the same region (-78 to -88 dB.
The lowest Gateway RSSI value was found in Node Id 10 with a value of -91 dB. From the
stored readings in the EEPROM of all Sensor Nodes, it was confirmed that each Sensor node
was able to receive the Gateway request irrespective of their distance from it.
Such a behaviour of the RSSI values and loss of packets could be due to noise or disturbance
from the environment which can cause the signal latency at gateway, different transmission
path can also lead to different RSSI values. Near the test field area, building construction
site was also found and short range devices such as hand held radio for voice communication
operating at 433 Mhz are also used in such places. Remote keys for cars often also use the
same frequency band in Europe.

68

6.2 Testing In an Open Field

15

43

21

-72.20

-74.50

-73.00

1.13

0.58

1.66

Node Id Mean DeviationDistances

60 m

30 m

50 m

Figure 6.21: Mean and Standard Deviation (Outside Test 1: Setting Three)

6.2.2 Second Test

In order to improve the reading range of real time measurement from the sensor nodes, some
modification was necessary in the software. In this test, the radio of the gateway was set in
receiving mode for a duration of 1.2 seconds after sending the request to get the response
from the node without any loss of packet if they are positioned at a large distance from
the gateway. The test was performed in snowy weather conditions. Sensor Node Id 20 was
excluded from this experiment due to its soldering connection break with the Sht25 board
inside the housing.
Setting One: The test was started with the same sequencce by positioning all nodes at a
distance of 10 m from the gateway and measurement values were recorded for 10 minutes. No
loss of packet was observed from any node.
Setting Two: The second arrangement of sensor nodes is shown in figure 6.22. The experi-
ment was carried out for 7 minutes and no packets were lost.

15

10

21

43

Node Id Distance from Gateway

10 meter

30 meter

40 meter

50 meter

Figure 6.22: Sensor Nodes Placements (Outside Test 2: Setting Two)

Figure 6.23 depicts the Node RSSI values and its symmetrical values with the Gateway RSSI.
RSSI values of nodes show a very good decreasing behaviour with their increasing distance
from the gateway. No strange readings were observed in this set up of sensors placement.
The lowest node RSSI value received at the gateway is -71 dB of Node Id 10. The range of
50 m has been covered in this test without any packet loss at the gateway end.
Setting Three: The sensor nodes arrangement and their readings observed for 14 minutes
can be seen in figure 6.24. No packets received from the Node Id 43, mounted at a distance

69

6 Testing and Measurements

Distance From Gateway
10 30 40 50

N
od

e
R

S
S

I V
al

ue

-75

-70

-65

-60

-55

-50

-45

ID 15
ID 21
ID 10
ID 43

(a) Node RSSI values
Gateway RSSI Value

-75 -70 -65 -60 -55 -50 -45

N
od

e
R

S
S

I V
al

ue

-75

-70

-65

-60

-55

-50

-45

ID 15
ID 21
ID 10
ID 43

(b) Gateway and Node RSSI

Figure 6.23: RSSI Values (Outside Test 2: Setting Two)

of 80 m. Whereas only one packet was received from Node Id 15 which was positioned at
distance of 70 m. Complete packets of Node Ids 10 and 21 were observed at the gateway.

15

10

21

43

Node Id Distance from Gateway

70 meter

60 meter

20 meter

80 meter

(a) Sensor Node Position

Sensor ID 15 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

2

4

6

8

10

12

14

16

(b) Number of Packets Received

Figure 6.24: Sensor Positions and Received Readings (Outside Test 2: Setting Three)

Maximum reading range of 60 m was achieved from Node Id 21 in the setting three of the
Nodes placement. It was necessary to analyse the gateway RSSI values received at the Node
Ids 15 and 43 for the lost packets. In order to accomplish this, EEPROM stored readings
were read from both Sensor Nodes. It was found out that both the nodes received the request
query from the gateway for the lost packets. The mean value of the gateway RSSI values
stored in the EEPROM for the lost packets of both nodes are shown in figure 6.25.
The Gateway RSSI mean values of the lost packets shown in figure 6.25 are higher as compared
to the mean values of the lost packets found in figure 6.18, even the nodes were much more
closer to the gateway in that configuration. This shows some noise or disturbance effect from

70

6.2 Testing In an Open Field

15

43

-76.50

-79.33

1.41

2.27

Node Id Mean DeviationDistances

70 m

80 m

Figure 6.25: Mean and Standard Deviation (Outside Test 2: Setting Three)

the environment which can lead to unrealistic behaviour of RSSI values and can also lead to
the loss of packets at the gateway end.

6.2.3 Third test

In the third test, the radio communication data rate was changed from 55.5 kBaud to 27.8
kBaud to see the behaviour of RSSI values by placing the Nodes at different location. Smaller
baud values account to increase the radio range but noise channel is also affected on it due to
its lower value. The Radio frequency analyser, Spectran HF-4040 V3, used in this experiment
to detect the devices operating in the frequency band of 433 Mhz other than sensor nodes.
This analyser HF-4040 V3 can be seen in figure 6.26.

Figure 6.26: Spectrum Analyser[21]

The analyser can detect the frequency from 100 MHz to 4 GHz and its signal strength
measuring range is -90 dBm to 0 dBm[21].

Setting One: Test started in the same sequence by placing all of them at a distance of 10
m except Node Id 20, which was positioned at 2 m. Node Id 20 was again functional after
soldering the connection with the Sht25 board in its housing. Previous EERPOM data was
erased from Node Id 20 due to raw values stored from the Second Test. The Rf data rate

71

6 Testing and Measurements

of this Node was set to 13 Kb. Test was executed for 8 minutes and all the packets were
received at the Gateway without loss.During the 8 minutes test, Rf analyser was also turned
on and it was continuously detecting noise with a peak level between -50 dBm to -60 dBm.
This signal from Rf analyser was continuously observable even at a far distance from the
Gateway. The signal strength of the Gateway was also measured at a distance of 1 meter
from the Rf analyser and the value found to be -50 dB.

Setting Two: Sensors placement in this experiment and their 14 minutes of recorded reading
received at the gateway can be seen in figure 6.27.

15

21

43

20

10

Node Id Distance from Gateway

60 meter

20 meter

30 meter

40 meter

50 meter

(a) Sensor Node Position

Sensor ID 15 Sensor ID 20 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

2

4

6

8

10

12

14

16

(b) Number of Packets Received

Figure 6.27: Sensor Positions and Received Readings (Outside Test 3: Setting Two)

In this configuration of the nodes placement, the peak noise measured from the Rf analyser
was -45 dBm. Only 5 and 6 packets were received from Node Id 21 and 43 respectively. The
region of lowest RSSI values belongs to the Node Id 21 as shown in figure 6.28, despite its more
closeness from the Gateway in comparison to Node Ids 10 and 43. RSSI values of Node and
Gateway are found symmetrical from the figure. Several Node placements were performed
in this test with the increasing distance from the Gateway but noise in the environment was
completely present, detected by the Rf analyser.

72

6.2 Testing In an Open Field

Distance From Gateway
20 30 40 50 60

N
od

e
R

S
S

I V
al

ue

-80

-75

-70

-65

-60

-55

ID 15
ID 20
ID 21
ID 10
ID 43

(a) Node RSSI values
Gateway RSSI Value

-80 -75 -70 -65 -60 -55

N
od

e
R

S
S

I V
al

ue

-80

-75

-70

-65

-60

-55

ID 15
ID 20
ID 21
ID 10
ID 43

(b) Gateway and Node RSSI

Figure 6.28: RSSI Values (Outside Test 3: Setting Two)

Setting Three: To examine the long communication range, Node Id 43 was repositioned at
a 100 m distance from the gateway. This testing was performed for 11 minutes. All the nodes
positioning and the packets received at the gateway from the nodes can be seen in figure 6.29.

15

21

43

20

10

Node Id Distance from Gateway

100 meter

10 meter

60 meter

80 meter

90 meter

(a) Sensor Node Position

Sensor ID 15 Sensor ID 20 Sensor ID 21 Sensor ID 10 Sensor ID 43

N
um

be
r

of
 R

ea
l D

at
a

V
al

ue
s

P
er

 S
en

so
r

0

2

4

6

8

10

12

(b) Number of Packets Received

Figure 6.29: Sensor Positions and Received Readings (Outside Test 3: Setting Three)

All the packets were received at the gateway end from Node Id 15 because of its very close
distance to gateway while no packets observed from Node Id 20, placed at 60 meter. Only
one packet was received from Node Id 43 even at a distance of 100 meter. Three packets
were received from Node Ids 21 and 10. Interfaced EEPROM was again read to verify the
nodes data in it, which showed that all the nodes received request query from the gateway.
To examine this sort of behaviour from the nodes, the measured RSSI values of nodes and
gateway for the received packets and the saved gateway RSSI values in the EEPROM of the
Nodes were compared with the model of free space path loss.

73

6 Testing and Measurements

6.2.3.1 Free Space Path Loss

Free space path loss model is used to determine the loss in signal strength of radio wave in a
line of sight communication. Free space path loss model is not valid in case of effects from the
ground or any obstacle in the communication path. It is used to estimate the path loss in low
range communication[22]. Free space path loss can be approximated by the below mentioned
formula[6].

FSPL(dB) = P0 − 10 · log10

(4 · π · d · f
c

)2
(6.1)

Where:
FSPL is the free space path loss in dB
P0 is a constant number such as antenna gain, antenna output power and receive power
d is the distance between transmitter and receiver
f is the operating frequency of transmitter and receiver
c is the speed of light

For the setting three of the third test, the free space path loss model was compared with the
Node and Gateway RSSI values of real and saved measurements in the EEPROM.

6.2.3.1.1 Comparing with Node and Gateway RSSI values

Figure 6.30 depicts the free space path loss model, compared with the mean RSSI values of
nodes and gateway of the received packets.

Distance In Meter
10 20 30 40 50 60 70 80 90 100

R
S

S
I v

al
ue

s
in

 d
B

-95

-90

-85

-80

-75

-70

-65

-60

-55 ID 15
ID 20
ID 21
ID 10
ID 43
Free-Space Path Loss Model

Figure 6.30: Free Space Path Loss Model Comparison

The "diamond" sign shows the mean value of all Node RSSI values and the "cross" sign shows
the gateway RSSI values in figure 6.30. The values of node and gateway signal strength of
Node Id 43, at 100 meter, are deviating from the path loss model. Values of Node Id 10

74

6.3 Current Measurements

completely matches with the model. Nodes Id 15 and 21 are in very close proximity to the
model. No RSSI value of Node Id 20 is shown in the plot due to not receiving of any packet
at the gateway.

6.2.3.1.2 Comparing with saved Gateway RSSI values in EEPROM

In order to analyse the stored signal strength values of gateway in nodes EEPROM, it was
also compared with the path loss model as shown in figure 6.31.

Distance In Meter
10 20 30 40 50 60 70 80 90 100

R
S

S
I v

al
ue

s
in

 d
B

-95

-90

-85

-80

-75

-70

-65

-60

-55 ID 15
ID 20
ID 21
ID 10
ID 43
Free-Space Path Loss Model

Figure 6.31: Comparison with saved Gateway RSSI in EEPROM

The black sign marking in the plot shows the EEPROM mean Gateway RSSI values received
at the nodes. The plot clearly verifies that the Node Id 20 also received the Gateway request
in the testing and its saved Gateway signal strength in the EEPROM completely matches
with the path loss model. In this case also, Node Id 43 kept its same response for deviating
from the path loss model.
There can be several reasons for the deviation from the path loss model such as ground noise
due to sensors positioning just at 50 cm above from the ground level, uneven surface of the
ground and also the noise measured from the Rf analyzer.

6.3 Current Measurements

Low current energy consumption is an important factor in making wireless sensor nodes. The
most of the current is consumed by the radio chip CC1101 core inside the CC430F5137 micro-
controller. At 433 MHz with the power output of antenna 10 dB, the radio current in receive
mode is 17 mA while the radio current in transmit mode is 29 mA[12]. Interfaced sensors
such as Sht25 and Tmp100 draw significant low current with their maximum consumption
of 330 µA[17] and 70 µA[16] respectively. The maximum write current in EEPROM is 3
mA and maximum read current is 1 mA[18]. The CC430F5137 microcontroller consume 160

75

6 Testing and Measurements

µA/MHz[10]. The current of Node was measured by the voltage drop over a 2.5 Ω resistor
after connecting it with the battery. It was found out that the current consumption in sleep
mode is 200 µA and it draws 17.6 mA when the radio is active in receive mode.

6.3.1 Current Consumption of Node when Sending EEPROM Data

Current consumption of Node was seen in the Oscilloscope when sending EEPROM data to
the Gateway. In case of five nodes, every node gets the request from the gateway after every
three seconds (600 ms x 5 = 3 sec) when the gateway radio receive time is selected to 600
ms. The radio of the node is turned on after every three seconds to receive the request from
the gateway and the node responds by sending the data to the gateway. The voltage drop
measured across the 2.5 Ω resistor when sending EEPROM data to the gateway is shown in
figure 6.32.

3 sec

44 mV 44 mV

100 ms
0.5 mV

(Sleep Mode)

(Radio mode)(Radio mode)

Figure 6.32: Node Current When Sending EEPROM Data

As shown in the plot, the node remains in low power mode for 3 seconds and the current
measured across resistor was 200 µA(0.5 mV/2.5 Ω) in this duration. After 3 seconds, the
radio turns on for a duartion of 100 ms and the current measured across resistor was 17.6 mA
(44 mV/2.5 Ω). Finally it can be said that significant amount of current is reduced in sleep
mode when sending EERPOM data to the gateway.

6.3.2 Current Consumption of Node when Sending Real Measurement Data

In this case also, the sleep mode current is same as of 200 µA for the duration of 1 minute.
After 1 minute, the radio is turned on in receive mode to listen the gateway query. It listens,
measures the current values and send it back to the Gateway. For this whole process the

76

6.3 Current Measurements

radio remains in receive mode for a period of 1 second as shown in figure 6.33. The majority
of the time is consumed for waiting gateway request.

0.5 mV
(Sleep Mode)

1 sec

44 mV
(Radio mode)

Figure 6.33: Node Current When Sending Real Measurement Data

Hence the node draws current of 17.6 mA for a duration of 1 second and then again goes in
sleep mode for 1 minute.

6.3.3 Current Consumption in Offline Mode

In offline mode, Sensor nodes draw very low current in the rating of 40 µA measured by
the multimeter. Current consumption is reduced in offline mode because of the no radio
implementation in this mode as well as usage of low power mode 3 in the microcontroller.

77

7 Conclusion

The overall goals achieved in the thesis are the successfully interfacing of sensors (Sht25 and
Tmp100) and the EEPROM with the Wizzimote board by I2C interface, interfaced sensors
integration with the Dash7 module for the communication between nodes and gateway and
high reading range capabilities of gateway to read sensor values from nodes in presence of
noise.

Transmission output power of antenna or receiver sensitivity and low data rate transmission
is the important factor to increase the range of Rf radio CC1101. In all the tests performed
inside or outside the building, the transmission output power was set at the maximum value
of 10 dBm and could not be increased further. The utmost requirement in the test was to
obtain real time measurements from the interfaced sensors of sensor nodes. In the building
test, sensor nodes were not positioned beyond 20 meter so the maximum reading range tested
in the building observed to be 20 meter without any loss of packets at the base station.
Open field tests were completely under the influence of noise and despite of this factor the
maximum reading range achieved in the test without any loss of packets at the gateway was
found to be 60 m in the first and second test with their setting three arrangement of nodes.
The highest range of 100 meter was tested in an open field trials with loss of packets, when
the data rate of radio set to 27.8 kBaud.

The number of saved readings in the EEPROM of all sensor nodes were found to be equal
which verifies that all the sensor nodes received gateway query in every test performed either
inside or outside the building. The packets loss of nodes data at the gateway, programmed
to specific radio receive time, becomes obvious due to the noise factor detected by the Rf
analyzer which can become the source of signal latency.

If the tests are to be performed in a noise free environment, then the range of these nodes
will be more promising with less packet loss at the Gateway end. The test was not carried
out in a banana container but the above discussions and findings show promising signs of
better results if it is tested in the container. In the future, the number of other sensors such
as air flow sensor or other parameter sensing devices can also be interfaced with the sensor
nodes by the I2C interface for the real time monitoring of other parameters too in Intelligent
Container.

78

List of Figures

1.1 Remote Monitoring [5] . 2
1.2 Overview of the thesis . 3

2.1 Wizzi Mote [9] . 5
2.2 Up Mode . 8
2.3 TAxCTL Register [12] . 8
2.4 TAxCCTLn Register [12] . 10
2.5 WDTCTL Register [12] . 10
2.6 I2C bus with Master and Slaves [13] . 12
2.7 Start Condition . 13
2.8 Stop Condition . 13
2.9 I2C Example Diagram [15] . 14
2.10 UCBxCTL0 Register [12] . 15
2.11 UCBxCTL1 Register [12] . 16
2.12 UCBxSTAT Register [12] . 18
2.13 UCBxIE Register [12] . 19
2.14 UCBxIV Register [12] . 20
2.15 Data Format [12] . 21

3.1 Tmp100 internal circuit [16] . 22
3.2 Internal Registers TMP100 [16] . 23
3.3 Pointer Register addressing [16] . 23
3.4 Resolution bits [16] . 24
3.5 Read Data Timing Diagram [16] . 24
3.6 Sht25 and its connection [17] . 25
3.7 Hold Master Mode [17] . 26
3.8 No Hold Master Mode [17] . 27
3.9 24AA64 Pin diagram [18] . 29
3.10 Device Addressing [18] . 29
3.11 Memory location Addressing [18] . 30
3.12 Page Write Cycle [18] . 30
3.13 Byte Write Cycle [18] . 31

79

List of Figures

3.14 Current Address Read [18] . 31
3.15 Random Address Read [18] . 32
3.16 Sequential Address Read [18] . 32
3.17 Oscilloscope Timing Diagram . 33
3.18 Rise Time of SCL . 34
3.19 Raw Default Value in EEPROM . 35
3.20 Starting address of the next sensor data 35
3.21 Magic Locations . 36
3.22 Data Storage in EEPROM . 37
3.23 First Board Schematic Diagram . 38
3.24 Second Board Schematic Diagram . 38
3.25 Board Diagram . 39
3.26 Complete Layout Diagram . 40
3.27 PCBs With Components . 40
3.28 Sensor Node Housing . 41

4.1 Star Topology . 43
4.2 OSS-7[20] . 43

5.1 Communication Overview . 46
5.2 Gateway state Diagram . 47
5.3 Data Received from Sensor Node . 48
5.4 Sensor Node Operation . 50
5.5 Modified Files . 51
5.6 Newly Created Software Modules . 51
5.7 Software Modules . 52
5.8 Software Modules . 53
5.9 Offline Mode Data in EEPROM . 54
5.10 Java Class Modification . 55
5.11 Log File Data . 56

6.1 Testing in Building . 58
6.2 Number of Packets Received (Test 1: Setting One) 59
6.3 Number of Packets Received (Test 1: Setting Two) 60
6.4 Temperature Values (Test 1: Setting Two) 60
6.5 Humidity Values (Test 1: Setting Two) . 61
6.6 Node RSSI Values (Test 1: Setting Two) 61
6.7 Correspondence between Gateway and Node RSSI (Test 1: Setting Two) . . . 62
6.8 Mean and Standard Deviation (Test 1: Setting Two) 62
6.9 Number of Packets Received (Test 2) . 63

80

List of Figures

6.10 Temperature Values (Test 2) . 63
6.11 RSSI Values (Test 2) . 64
6.12 Mean and Standrad Deviation (Test 2) . 64
6.13 Complete Setup . 65
6.14 Number of Packets Received (Outside Test 1: Setting One) 65
6.15 Mean and Standard Deviation (Outside Test 1: Setting One) 66
6.16 Sensor Positions and Received Readings (Outside Test 1: Setting Two) 66
6.17 RSSI Values (Outside Test 1: Setting Two) 67
6.18 Gateway RSSI Values Of Lost Packets (Outside Test 1: Setting Two) 67
6.19 Sensor Node Positions (Outside Test 1: Setting Three) 68
6.20 Number of Packets Received (Outside Test 1: Setting Three) 68
6.21 Mean and Standard Deviation (Outside Test 1: Setting Three) 69
6.22 Sensor Nodes Placements (Outside Test 2: Setting Two) 69
6.23 RSSI Values (Outside Test 2: Setting Two) 70
6.24 Sensor Positions and Received Readings (Outside Test 2: Setting Three) . . . 70
6.25 Mean and Standard Deviation (Outside Test 2: Setting Three) 71
6.26 Spectrum Analyser[21] . 71
6.27 Sensor Positions and Received Readings (Outside Test 3: Setting Two) 72
6.28 RSSI Values (Outside Test 3: Setting Two) 73
6.29 Sensor Positions and Received Readings (Outside Test 3: Setting Three) . . . 73
6.30 Free Space Path Loss Model Comparison 74
6.31 Comparison with saved Gateway RSSI in EEPROM 75
6.32 Node Current When Sending EEPROM Data 76
6.33 Node Current When Sending Real Measurement Data 77

81

Bibliography

[1] The intelligent container. http://www.intelligentcontainer.com/.

[2] Reiner Jedermann, Ulrike Praeger, Martin Geyer, and Walter Lang. Remote quality
monitoring in the banana chain. Transactions of the Royal Society, Vol.372, June 2014.

[3] Cantwell MI. In postharvest technology of horticultural crops (ed. a. kader). 2002
Summary table of optimal handling conditions for fresh produce.

[4] Reiner Jedermann, Markus Becker, Carmelita Goerg, and Walter Lang. Testing network
protocols and signal attenuation in packed food transports. Int. J. of Sensor Networks,
Vol.09(Nos. 3/4):pp.170–181, 2011.

[5] Walter Lang, Reiner Jedermann, Damian Mrugala, Amir Jabbari, Bernd Krieg-
Brueckner, and Kerstin Schill. The "Intelligent Container" A Cognitive Sensor Network
for Transport Management. IEEE SENSORS, Vol.11(No.3):pp.688–698, March 2011.

[6] Reiner Jedermann, Thomas Poetsch, and Chanaka Lloyd. Communication techniques
and challenges for wireless food quality monitoring. Transactions of the Royal Society,
Vol.372, June 2014.

[7] Dash7 alliance. http://www.dash7-alliance.org/.

[8] WizziLab. Wizzikit the smallest and most versatile dash7 development kit, 2012. http:

//www.wizzilab.com/wp-content/uploads/2012/12/WizziKit-ProductBrief.pdf.

[9] WizziLab. Getting started with the wizzikit 2, 2012-2013. http://www.wizzilab.com/

wp-content/uploads/2013/03/WizziKit2-Datasheet.pdf.

[10] Texas Instrument. Msp430 soc with rf core, September 2013. http://www.ti.com/lit/

ds/symlink/cc430f5137.pdf.

[11] Aldo Briano. Msp430 launchpad low power mode, August 2010. http://processors.

wiki.ti.com/index.php/MSP430_LaunchPad_Low_Power_Mode.

[12] Texas Instrument. CC430 Family User’s Guide, May 2009. http://www.ti.com/lit/

ug/slau259e/slau259e.pdf.

82

http://www.intelligentcontainer.com/
http://www.dash7-alliance.org/
http://www.wizzilab.com/wp-content/uploads/2012/12/WizziKit-ProductBrief.pdf
http://www.wizzilab.com/wp-content/uploads/2012/12/WizziKit-ProductBrief.pdf
http://www.wizzilab.com/wp-content/uploads/2013/03/WizziKit2-Datasheet.pdf
http://www.wizzilab.com/wp-content/uploads/2013/03/WizziKit2-Datasheet.pdf
http://www.ti.com/lit/ds/symlink/cc430f5137.pdf
http://www.ti.com/lit/ds/symlink/cc430f5137.pdf
http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_Low_Power_Mode
http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_Low_Power_Mode
http://www.ti.com/lit/ug/slau259e/slau259e.pdf
http://www.ti.com/lit/ug/slau259e/slau259e.pdf

Bibliography

[13] I2C Interface or TWI (Two Wire Interface). http://www.engineersgarage.com/

tutorials/twi-i2c-interface.

[14] Embedded Lab. Inter-Integrated Circuit (I2C) communication, May 2009. http://www.

ti.com/lit/ug/slau259e/slau259e.pdf.

[15] John H. Davies. MSP430 Microcontroller Basics. Newnes, 2008.

[16] Texas Instrument. Digital Temperature Sensor with I2C Interface, 2007. http://www.

ti.com/lit/ds/symlink/tmp100.pdf.

[17] Sensirion. Humidity and Temperature Sensor IC, 2014. http://www.sensirion.com/

fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_

Humidity_SHT25_Datasheet_V3.pdf.

[18] Microchip. 64K I2C Serial EEPROM, 2002. http://ww1.microchip.com/downloads/

en/DeviceDoc/21189f.pdf.

[19] JP Norair. Introduction to dash7 technologies, March 2009. https://dash7.

memberclicks.net/assets/PDF/dash7%20wp%20ed1.pdf.

[20] Maarten Weyn, Glenn Ergeerts, Luc Wante, Charles Vercauteren, and Peter Hellinckx.
Survey of the Dash7 Alliance Protocol for 433MHz Wireless Sensor Communication.
International Journal of Distributed Sensor Networks, 2013.

[21] AARONIA AG. http://www.aaronia.com/Datasheets/Spectrum_Analyzer/

Handheld_Spectrum_Analyser_Spectran_HF-4000.pdf.

[22] Free space path loss: Details, formula, calculator. http://www.radio-electronics.

com/info/propagation/path-loss/free-space-formula-equation.php.

83

http://www.engineersgarage.com/tutorials/twi-i2c-interface
http://www.engineersgarage.com/tutorials/twi-i2c-interface
http://www.ti.com/lit/ug/slau259e/slau259e.pdf
http://www.ti.com/lit/ug/slau259e/slau259e.pdf
http://www.ti.com/lit/ds/symlink/tmp100.pdf
http://www.ti.com/lit/ds/symlink/tmp100.pdf
http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT25_Datasheet_V3.pdf
http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT25_Datasheet_V3.pdf
http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT25_Datasheet_V3.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21189f.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21189f.pdf
https://dash7.memberclicks.net/assets/PDF/dash7%20wp%20ed1.pdf
https://dash7.memberclicks.net/assets/PDF/dash7%20wp%20ed1.pdf
http://www.aaronia.com/Datasheets/Spectrum_Analyzer/Handheld_Spectrum_Analyser_Spectran_HF-4000.pdf
http://www.aaronia.com/Datasheets/Spectrum_Analyzer/Handheld_Spectrum_Analyser_Spectran_HF-4000.pdf
http://www.radio-electronics.com/info/propagation/path-loss/free-space-formula-equation.php
http://www.radio-electronics.com/info/propagation/path-loss/free-space-formula-equation.php

	Introduction
	Thesis Background
	Motivation
	Proposed Solution

	Thesis Overview
	Tasks of the thesis
	Structure of the Report

	CC430F5137 and Its Peripherals
	Wizzi Mote Board
	CC430F5137 Microcontroller
	Clock Sources
	Low Power Modes
	Timers
	WatchDog Timer
	I2C Serial Communication
	UART Communication

	Hardware Components and I2C Implementation
	TMP100 Sensor Implementation
	Internal registers of TMP100 Sensor
	I2C Communication with TMP100

	SHT25 Sensor Implementation
	Communication Modes in SHT25 sensor
	Resolution bits in SHT25 sensor
	Data Conversion for Temperature and Humidity

	Serial EEPROM Implementation
	Device and Memory addressing in EEPROM
	Write cycle in EEPROM
	Read cycle in EEPROM
	Demonstration of Timing Diagram on Oscilloscope
	Prevention of Overwriting data in EEPROM

	Battery Cells
	PCB Designing Of Interfaced Devices
	PCB Schematic Design
	PCB Board Design
	Complete PCB design

	DASH7 Alliance Protocol
	Dash7 Introduction
	Dash7 Software Stack
	Dash7 Applications
	Home Automation
	Parking Guidance
	Automotive Senors
	Military

	Dash7 Version

	Gateway and Node Communication
	Communication Overview
	Detailed Description of the Communication
	Gateway State Machine
	Sensor Node Operation

	Software Modules
	List of All Software Modules
	Software Modules for Getting Current Sensor Measurements
	Software Modules for Getting EEPROM values

	Offline Mode
	Java Software Modification
	Log File Data Presentation

	IDE for the Software
	Code at SVN

	Testing and Measurements
	Testing in Building
	Test One
	Test Two

	Testing In an Open Field
	First Test
	Second Test
	Third test

	Current Measurements
	Current Consumption of Node when Sending EEPROM Data
	Current Consumption of Node when Sending Real Measurement Data
	Current Consumption in Offline Mode

	Conclusion
	List of Figures
	Bibliography

