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ABSTRACT 
 Biological processes continue after harvest in most of the fresh fruits. The generated heat, created by such 
climacteric fruits, must be removed by a cooling unit, but the amount of heat is also a valuable indicator for 
the current state of the product. In this paper we will present an approach, how the generated heat can be 
estimated from the measured temperature over time curve as additional – time varying – process state by the 
recursive and computational efficient algorithm of the Kalman filter. The application of the Kalman filter 
required a special adaptation. The parameter for heat removal has to be estimated by system identification 
techniques in the first step. The resulting time-continuous model has to be translated to a discrete state-space 
description of the process. Noise covariance matrices had to be defined. The required algorithm was 
implemented as JAVA code on a processing unit mounted directly in our prototype ‘Intelligent Container’. 
In an application example we showed how the ripening process of bananas can be supervised by the 
suggested system. 

1.   MOTIVATION AND SCENARIO 
Fresh foods and vegetables have arrived at a tremendous market share. Seaborne perishable reefer cargo has 
increased to 92.4 million tonnes in 2012 (Drewry Shipping Consultants, 2013). In order to guarantee the 
quality of the products and to detect problems as early as possible, it is necessary to monitor the temperature. 
Temperature data can be read ‘offline’ from data loggers packed with the product or from sensors connected 
to the cooling unit after arrival of the container. New technologies allow transmitting temperature 
measurements ‘online’ during transportation (Jedermann et al., 2013). In most cases, the provided data are 
only checked for maximum or average temperature. But temperature data can tell much more than just 
threshold checking. In this paper we firstly show, by an example scenario for the transport and ripening of 
bananas, how a detailed analysis of temperature data can look like. Secondly we demonstrated that this 
analysis in not only feasible by elaborated mathematical tools on powerful desktop PCs, but also on 
embedded systems that can be integrated into the container. This so called ‘Intelligent Container’ can 
automatically analyse measurement data and generate warning messages, if a problem is detected.  

The mathematical models behind our analysis are, of course, very specific to bananas. But our intention is to 
present our application as a template to motivate the reader to create own mechanism for automated 
evaluation of temperature data.  

1.1.  The banana cold chain 
Bananas have two distinguishing characteristic features compared to most other fruits. The first one is the 
fact that most parts of the ripening process with conversion from starch to sugar takes place after harvest. 
This leads to the second feature, their high respiration activity. The conversion creates large amounts of CO2 
and thermal energy. The heat production can vary over a wide range from 20 W/ton for green bananas at 
optimal storage conditions (13°C, CO2=5%, O2<5%) to 800 W/ton (Kerbel 1986) for yellow bananas at 20°C 
in normal atmosphere. 

In our field studies, the bananas were packed to pallets and stowed into our test container in Costa Rica with 
a temperature of about 25°C. During transport they were cooled to about 14°C. The container was shipped to 
Antwerp (2 weeks) and then trucked to Germany (1 day), where ripening was initiated by ethylene treatment 
(1 day). After 5 days of ripening, the pallets were handed over to a wholesale trader. 
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Banana packing to boxes and stowage of pallets in the container is optimized to make best use of the 
available space. Due to the dense packing, only a reduced share of the cooling air from the reefer unit 
actually arrives at the bananas inside the boxes. The airflow might be completely blocked by packing 
mistakes. The high respiration activity can lead to a hot spot, in which the amount of generated heat is larger 
than the heat that is removed by the airflow.  

1.2.  Modelling approach 
The temperature should be monitored permanently, in order to detect such risks as early as possible. 
However, a simple threshold checking does not make sense because of the temperature change from 25° to 
14°C during cooling. In our approach we approximate the temperature curve by a parameterised model. 
Threshold checking is applied on model parameters, not on the actual temperature values.  

The different behaviour of green and yellow bananas made it necessary to apply two variants of our model. 
The first variant uses time constant parameters to describe temperature changes of green bananas during 
transport. The second variant has to take the varying respiration activity during ripening into account and 
describe it by an unknown time varying function.  

The first model for transportation has been described in an earlier publication (Jedermann et al., 2013) in 
detail and will only be shortly summarized in section 2. The main focus of this paper is to extend this model 
for estimation of the time varying respiration activity during ripening (section 3).  

The required model parameters, which have to be estimated individually for each sensor or pallet, 
respectively, are summarized in table 1. During transport only two parameters or proportional factors are 
required: kM describes the cooling effect per box or pallet. It is used to verify cooling and correct packaging 
and stowage. kP scales the respiration activity, which is reduced by controlled atmosphere conditions (3% 
CO2 and 2-5% O2). A high value indicates pre-mature start of the ripening process. After ethylene treatment, 
kP has to be replaced by the time function r(t). 

Table 1.  Properties for remote monitoring of cooling in the banana supply chain 

Parameter  Unit Type Related to Description Warning conditions 

kM - Constant 
Transport, 
Ripening 

Factor for cooling 
effect on box/pallet 

Low kM  poor cooling by packing / 
stowage mistakes 

kP °C/hour Constant Transport 
Factor for 

respiration heat 
High kP  pre-mature ripening 

r(t) W/ton 
Time 

function 
Ripening 

Respiration heat as 
time function 

Low r(t)  Ripening not fully started 
High r(t)  Increased cooling required

 

1.3.  Hardware platform 
Our intelligent container (Jedermann et al., 2014) consists of a set of wireless sensors based on the TelosB 
platform (Crossbow Technology Inc., California). Additional measurements were taken by iButton data 
loggers (DS1922L, Maxim Integrated, California). The measurements from the wireless sensors were 
collected and processed by an embedded computer (VTC6100 from Nexcom, UK with Intel Atom N270 
single core processor @ 1.6GHz), the so called Freight Supervision Unit (FSU). The FSU also provides an 
interface to read out and adjust the set point of the cooling unit. Either full measurement data or only 
warning messages on critical parameters values can be sent by a telematics unit (Iridium based by OHB, 
Germany) over a satellite network to a remote server. If the container is ashore, the external communication 
can be switched to more cost efficient cellular / GSM networks. 

2.   AUTOMATED TEMPERATURE DATA EVALUATION DURING TRANSPORT 
After initial tests with a general second order model, we found the model in figure 1 most useful to 
approximate the measured temperature curves and to describe them with a minimal set of parameters. The 
model predicts changes of the temperature in the centre of a banana box y(t) with the measured supply 
temperature over time function u(t) as input. The model structure in figure 1 has to major advantages a) it 
enables to estimate index values for the generated and the removed heat as two separate parameters, and b) it 
also describes the non-linear relation between respiration heat and temperature.  
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Figure 1.  Block diagram of dynamic system model for the temperature y(t) in box centre.  

 

The temperature change caused by respiration activity x3(t) depends on the current biological state of the 
bananas (kP), but also increases exponentially with the current temperature according to eq. (1) with Q10 = 3.  
 

C10/)C13)(()10ln(
3 )(  tyQ

P ektx  (1)
 

The model basically consists of two delay elements with time constants of 4 and 15 hours. The constants T1, 
T2 and Q10 were set according to earlier tests in order to enable adaptation of the model to a wide range of 
fast and slow cooling curves (Jedermann et al., 2013). The fact that 3 out of 5 model parameters can be 
considered as constant is a further advantage of the specific model structure in figure 1 compared with a 
general second order dynamic model.  

The 2 variable parameters kM and kP are estimated with help of the Matlab System Identification Toolbox 
(The MathWorks, Inc., Massachusetts). x1(t) and x2(t) are the internal states of the model. The influence of 
noise, which creates a difference between the model state x2(t) and the observed output value y(t) is discussed 
in more detail in the next section, see eq. (4). 

Figure 2a shows the measured temperature curves during one transport in April 2013. The sensors B144 
(centre of pallet) and B138 (close to gap between pallets) were selected from the data set to represent typical 
curves for slow and fast cooling. The model provided a good approximation with a root-mean-square error 
(RMSE) below 0.1 K (Kelvin, average RMSE of 168 sensors/model instances = 0.044 ± 0.017 K during two 
separate test transports). The identified model parameters are given in the table 2. The respiration activity 
was re-calculated based on the model and converted to the unit W/ton (figure 2b) according to eq. (2).  
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At the end of the transport r(t) arrives at values between 15 and 30 W/ton.  

The model in figure 1 describes a non-linear system for prediction of the box temperature as output signal, 
due to the exponential function. However, for the purpose of parameter identification, both system input and 
output are known in advance. The model equations can be re-arranged to include only linear dependency 
from the unknown parameters km and kp.  

The term C10/)C13)(()10ln(  tyQe can be calculated in advance for constant Q10 and thus making eq. (1) linear. 
The input of the first delay element can be re-arranged to  
 

 )()()()( tytuktytg m  . (3)
 

The two parameters km and kp both appear only once in the equations. If T1 and T2 are considered as constant, 
the task of system identification is simplified to a linear problem. Our implementation of the FSU solves this 
problem by an incremental algorithm requiring only the update of a 4 by 4 matrix after each measurement.  

 

 

T2 =
15 hours

T1 =
4 hours

u(t) y(t)+ +·kM

·(1-kM)

x3(t)

Delay Delayx1(t) x2(t)
+

sy(t)

Noise

Box 
centre

Supply air 
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3.   AUTOMATED TEMPERATURE DATA EVALUATION DURING RIPENING 
If the biological state of the bananas changes over time, as it is the case after ethylene treatment, the 
respiration activity x3(t) can no longer be calculated by eq. (1) with a constant parameter kP. The more 
general case of estimating x3(t) as arbitrary time function needs a more elaborated approach, which is 
described for the first time in this paper.  

The Kalman filter has been used for estimation of system states since several decades. It is predestined for 
embedded applications because of its simple recursive formulation. Current applications include navigations 
systems for pedestrians by outdoor GPS and an RFID based location system for indoor use (Kourogi et al., 
2006), and measurement of performance parameters of aircraft engines (Kobayashi et al., 2005). 

The general idea of the Kalman filter can be illustrated by a simple example. A pendulum has two states: its 
position and velocity. If only the position can be directly observed, the velocity can be calculated as 
differentiation of position. This simple, straightforward approach has the disadvantage of being very 
sensitive towards noise. The Kalman filter avoids numerical differentiation and thus provides more accurate 
estimation. Instead, the Kalman filter calculates the system states by simulation of the system model based 
on known inputs such as forces affecting the pendulum. The simulation is corrected according to the residual 
between predicted and observed output signals, e.g. the position. The residual is multiplied with a Kalman 
gain, depending on the statistical properties of system noise. The Kalman filter is mathematically derived 
from the condition that the squared error between estimated and actual system states becomes minimal.  

Because of limited space, we will give only a short summary of the mathematical formulation of the Kalman 
filter in the following. A more detailed introduction can be found in standard textbooks, e.g. Brown and 
Hwang, 2012, or internet tutorials, e.g. Welch and Bishop, 2006.  

 

 Transportation Ripening 

 
 
Figure 2. Measured temperature curves during 
transportation (a) and calculated respiration heat (b) 
for two example sensor positions B144 and B138. 

Figure 3. Measured temperature during ripening 
(a) and calculated respiration heat (b) according 
to Kalman filter.  

 
Table 2. Identified kM and kP parameters, respiration activity at the end of transport/ripening and the root-
mean-square-error between measured values and model for the curves in figure 2a and 3a.  

 
Sensor 

Number  
kM  kP  RMSE 

Model  
Resp. Heat 
Transport 

 Resp. Heat 
Ripening 

RMSE 
Kalman 

B144  0.768 0.0292 K/h 0.033 K 29.5 W/ton  159.3 W/ton 0.032 K 
B138  0.904 0.0157 K/h 0.042 K 15.3 W/ton  64.3 W/ton 0.026 K 
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3.1.  General state space system description 
A time continuous system can be described in the state space representation in eq. (4), with x(t) as state 
vector, A as system matrix, B as input and C as output matrix. For simplicity we consider only systems with 
a single input and output. However, eq. (4) can be extended to multi input or output systems by replacing the 
scalars u(t) and y(t) with vector functions. Matrix Q describes amplitude of process noise that directly affects 
the system states. If this effect is statistically independent for different system states, only the elements on 
the diagonal of Q have to be set. R describes the measurement noise at the output of the system. For a single-
output system R becomes a scalar. sx(t) and sy(t) are two vector random variables with a unit normal 
distribution (σ =1). Matrices that are specific to the time-continuous model are marked with a single 
apostrophe.  
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ttut
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3.2.  Discretisation 
In general, the time discrete domain is preferred for numerical solution of the system equations. But in our 
work we decided to use the time continuous domain for system identification as shown in section 2 with the 
advantage that it directly estimates meaningful parameters for generated and removed heat. However, the 
Kalman filter is easier to solve in the time discrete form. Before application of the Kalman filter, the system 
matrices have to be translated to their time discrete equivalent marked with a double apostrophe. This 
process is called discretisation. Matlab provides powerful functions for this task such as ‘c2d’ in the ‘Control 
System Toolbox’. A general description of the underlying algorithm can be found in Middleton and 
Goodwin (1990). Because Matlab is rather impractical for implementation on an embedded data evaluation 
unit, the discretisation algorithm in eq. (5) has to be translated to a standard programming language.  
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There are several ways to calculate the matrix exponential (Moler and Van Loan, 1978) as required for eq. 
(5). We decided to use the Taylor series approach because of its simple implementation, although it was 
criticized by Moler and Van Loan (1978) for its computational inefficiency. However, the computation time 
on our target system was still acceptable. 

3.3  Application of the Kalman filter 
After having translated the system description to a discrete form, the system states can be estimated by an 
iterative process. The equation set (6) has to be updated after each measurement interval. The two equations 
on the left formulate the predictor for the estimated system state and the covariance of the estimation error P. 
The 3 equations on the right formulate the correction of the Kalman filter after each step, for the Kalman 
gain K, the estimated system state and the error covariance matrix. The superscript ‘minus’ marks matrices 
before correction, which is changed to ‘plus’ after correction. A matrix inversion is only necessary for multi-
output systems; otherwise it is reduced to a scalar division. This recursive formulation makes the Kalman 
filter computationally very efficient. For a detailed description see Brown and Hwang, 2012. 
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3.4.  System description for the case of ripening 
The Kalman filter only estimates system states, not inputs. The current respiration activity is related to the 
concentration of active enzymes converting starch to sugar. Because enzyme concentrations change only 
slowly over time, we can consider the respiration activity as an additional system state. The speed of the 
underlying biological processes depends on several – not measured – influence factors such as O2, CO2 and 
ethylene gas concentrations. Therefore it is hardly possible to calculate respiration activity by a biological 
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model under the conditions of container transportation. Instead, we assumed that changes of the respiration 
activity over time )(3 tx is given by the random variable sx,3.  

The simplified model described in section 2 is valid during sea and road transportation (phase 1) until 
ethylene treatment starts. At this point of time we switch to the extended model with an additional state 
variable and start the iteration of the Kalman filter (phase 2). The matrices for the time continuous 
description of the resulting system were set according to the model given in figure 1. Both delay elements 
with input un(t) were translated to a differential equation according to eq. (7). The 3 differential equations 
were combined in the matrix form according to eq. (4). For kM, the value was used that was estimated during 
transportation. 
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3.5  Initialisation of the Kalman filter 
The initialisation of the system states and the noise covariance matrices is the trickiest task during the 
application of the Kalman filter. A useful setting of the initial values of the system state vector x0 and of the 
error covariance matrix P0 speeds up the conversion process. The initial system state x0 of phase 2 can be 
calculated according the model of phase 1 by eq. (9) under the assumption that the cooling process has 
completed and both u(t) and y(t) have arrived at a constant value. 
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The noise of the observed discrete output signal yk depends basically on quantisation effects caused by the 
limited resolution of the applied sensor of 1/16 K (iButton, Maxim Integrated). The covariance matrix R for 
the output noise is set to the variance of the quantisation error vs.  
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The measured discrete input signal uk is disturbed by quantisation of the same amplitude. The noise of uk has 
a direct effect on the first system state x1k in relation to first element of the input matrix B”. The change of 
respiration activity x3k over time is described as a random process. We assume that the average change of x3k 
per sample interval of 10 minutes is equivalent to 3% of its initial value x30 before ethylene treatment, 
leading to a variance vr given in eq. (11). The elements of the covariance matrix of the process noise were set 
accordingly. The initial error of the estimation P0 for the first two system states was set in relation to the 
quantisation noise vs. We assume a smaller error than vr for the third state, since the initial value for x30 was 
directly calculated by eq. (9). 
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Although the setting of the matrices Q, R and P0 has some inaccuracies in our case, the Kalman filter turned 
out to provide a robust and fast iteration. In practice, the noise covariance matrices Q and R are often used to 
‘tune’ the Kalman filter (Welch and Bishop, 2006). Higher values of vr lead to faster iteration, but also to a 
more noisy estimation of x3. 

3.6.  Application of the continuous to discrete transformation 
Because km is estimated anew for each transport and sensor, the discretisation of the system matrix cannot be 
done in advance. We used the Taylor series approximation for the matrix exponential in our implementation 
and stopped after the element A´5. The inversion of the system matrix A´ as required for eq. (5) can be 
simplified. In this special case, it is only necessary to invert the 2 by 2 sub-matrix in top-left position because 
the system state x3 depends neither on other states nor on the input signal u(t). A comparison of the 
calculated matrices A” and B” for our implementation for the continues to discrete transformation and the 
original c2d Matlab function showed only a very small error of maximum 14 ×10-12 per matrix element.  

3.7  Application example 
During 3 field tests, bananas were ripened inside our test container. Figure 3a shows two example 
temperature curves measured during ripening. The set point of the container was stepwise reduced to 
compensate for the increasing respiration activity over a remote interface. The generated heat in figure 3b 
was calculated by the Kalman filter. The calculation is based on the assumptions that a) the heat removal by 
cooling can be modelled by a second order system ─ either in general form or by the structure in figure 1 ─ 
and b) the related model parameters can be estimated separately from the respiration heat by the temperature 
curve of the cooling process during transportation. For verification of the implementation of the Kalman 
filter, we simulated the model in figure 1 by setting the input x3(t) to the estimated respiration activity. The 
measured and predicated system output showed only a small deviation with an RMSE of about 0.05 K.  

At the end of the ripening process, the cooling unit has to be able to remove about 5 times more thermal 
energy than before ethylene treatment. The temperature curves were still increasing at the end of our test, 
which means that the biological activity had not arrived at its maximum. An evaluation of skin colour also 
indicated that the ripening process was not completed. The bananas were removed from the container in a 
colour stage between 3 (more green than yellow) and 4 (more yellow than green). Full ripeness should only 
be achieved when the bananas arrive at the retail store, in order to provide maximum freshness for the 
customers. The maximal respiration activity of 159.3 W/ton in our test is about 42% of the value given by 
Kerbel (1986) of 376 W/ton at 15°C in normal atmosphere. The lower value can be ascribed to two factors: 
a) the higher CO2 concentration of ~4.5% in our test and b) the peak of heat generation had not been reached.  

Although the embedded implementation of the Kalman filter had not been finished in time for the field test, 
we could show in later tests with recorded temperature curves that it is fully feasible to run the algorithm on 
the Freight supervision unit (FSU) of the container. We selected the programming language Java to write the 
software implementation. Due to it dynamic nature, Java provides built-in solutions to update software 
components on the FSU (Dannies et al., 2013), for example, if a new type of fruit requires a specific model.  

Additional libraries such as Jama (http://math.nist.gov/javanumerics/jama/) provide high accuracy matrix 
operations. The Java software bundle required 700 ms to process the data of 827 measurement intervals on 
an Intel ATOM processor running at 1.6 GHz, which is less than 1 ms per interval. The discretisation and 
initialisation of the matrices required 19 ms. The software should therefore be suited for smaller µControllers 
with floating point support, eg. ARM based systems.  

4.   SUMMARY AND DISCUSSION 
We could show by our case study that additional information can be extracted from measured temperature 
curves during transportation, including parameters about cooling efficiency, respiration activity of fruits and 
status of the ripening process. For the case that system properties cannot be described by time constant 
parameters, the Kalman filter is a very useful approach to estimate the required information in the form of 
time-varying system states. We showed by our application example for the transport of packed bananas, that 
an embedded implementation of the required algorithms is feasible. An ‘Intelligent Container’ or even 
intelligent sensors can autonomously analyse temperature data and thereby provide a more accurate 
monitoring of fruit transportation and ripening. The translation of our approach to another type of product or 
packing requires an analysis of the thermal relations between product, packing and cooling for the specific 
product, but should be worthwhile to undertake the necessary effort.  
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NOMENCLATURE 
 

Scalar Unit 
t Time h 

u(t) Supply air temperature / 
system input 

°C 

y(t) Box centre temperature 
/ system output 

°C 

x1,2(t) State of delay elements °C 
x3(t) Temperature change 

caused by respiration 
K·h-1 

r(t) Respiration heat W·t-1 

 
Constants / Parameters Unit 
kM Cooling efficiency - 

kP 
Proportional factor 

respiration heat 
°C·h-1 

cR 
Conversion factor 
for respiration heat 

930.5 
Ws·K-1·t-1 

T1,T2 Time constants 4 h / 15 h 
TS Sample interval 0.166 h 
n Number of states 3 

vS 
Variance of sensor 

noise 
K2 

vR 
Variance of 

measurement noise 
K2 

 
Matrix/Vector Size 

x System state vector n×1 
A System matrix n×n 
B Input matrix n×1 
C Output matrix 1×n 
K Kalman gain n×1 
I Unity matrix n×n 
sx White noise (input) n×1

sy 
White noise 

(output) 
1×1 

 
Covariance Matrixes Size 

Q Process noise n×n 
R Measurement noise 1×1 
P Estimation error n×n 
 
 
Matrix size related to single 
input – single output system. 

Absolute temperature given in 
°C, relative temperatures in K 
(Kelvin). 

Unit ‘t’ = ton. 

 
Subscripts 

k Time / iteration step 
0 Initial state / before 

ethylene treatment 
 

Superscripts 
T Matrix transpose 

´ 
Time continuous 

description 

´´ 
Time discrete 

description 

- 
Before Kalman 

correction (a priori) 

+ 
After Kalman cor-

rection (a posteriori) 
-1 Matrix inversion 
^ Estimated value 
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