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The “Intelligent Container”—A Cognitive Sensor
Network for Transport Management

Walter Lang, Reiner Jedermann, Damian Mrugala, Amir Jabbari, Bernd Krieg-Brückner, and Kerstin Schill

Abstract—The “Intelligent Container” is a sensor network used
for the management of logistic processes, especially for perishable
goods such as fruit and vegetables. The system measures relevant
parameters such as temperature and humidity. The concept of
“cognitive systems” provides an adequate description of the com-
plex supervision tasks and sensor data handling. The cognitive
system can make use of several algorithms in order to estimate
temperature related quality losses, detect malfunctioning sensors,
and to control the sensor density and measurement intervals.
Based on sensor data, knowledge about the goods, their history
and the context, decentralized decision making is realized by
decision support tools. The amount of communication between
the container and the headquarters of the logistic company is
reduced, while at the same time the quality of the process control
is enhanced. The system is also capable of self-evaluation using
plausibility checking of the sensor data.

Index Terms—Cognitive systems, cool-chain telemetric, intelli-
gent container.

I. INTRODUCTION

T HE “Intelligent Container” project [1] is developing a
sensor network used in logistics, especially for the man-

agement and control of the transport of perishable goods such
as fruit and vegetables. The idea can be explained by looking at
fruit transport. Today when bananas are transported by ship, say
from Middle America to Europe, their temperature is recorded
by data loggers. If a certain threshold is not superseded, the
transport is classified as OK. In general, a container has 2–3
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temperature measurement points. More advanced systems are
equipped with telemetric which sends the temperature data
to a remote server. The temperature value is communicated
to the headquarters of the company, where the temperature
values of all transport units are evaluated. This standard tele-
metric approach has two disadvantages: First, the costs for a
permanent transfer of temperature data over satellite links are
high. Second, if the remote headquarter uncovers a problem
during the transport, it has very limited options to influence the
container directly.

The vision of the “Intelligent Container” project is not just
to measure, but to evaluate data in the sensor network and to
make decisions locally. From the temperature history of the
bananas, with information on their quality when the container
was loaded, the system estimates the quality they have at the
present time, which is essentially the status of their ripening
process. Furthermore, it makes a prediction of the future de-
velopment, estimating how long the fruit will be OK for fur-
ther processing in a banana ripening plant, and when the fruit
will have to be disposed of since their quality has fallen below a
given threshold. This estimation of their shelf life is performed
by software agents in the sensor network.

By making decisions locally using decision support tools, the
amount of data transferred is drastically reduced: from hundreds
of temperature data, to just “temperature is OK” and “remaining
shelf life is five days” [2].

For logistics, this development implies a change of paradigm.
Currently, the logistic paradigm is first in first out (FIFO): the
goods coming in first are the first to be moved onward. The
decay of goods is described by a date of expiry, which is de-
fined at production time and remains unchanged. For perishable
goods, it is much more effective to change the logistic process
according to the remaining time of shelf life. Goods that are
close to decay have to be transported or sold with preference
[2]. The key idea of the new paradigm is first expire first out
(FEFO): temperature sensing motes with shelf life estimators
allow estimating the expiry date according to the circumstances
the goods are being exposed to. As an example, red tomatoes are
to be stored at 12 C; when stored at C, the loss of shelf
life will be two days per day, the shelf life is cut in half [2]. When
the expiry date is changed during the logistic process dynam-
ically, the term dynamic FEFO is used. A large number of re-
search groups are working world wide on sensor motes and pro-
cesses to push the FEFO paradigm [3]. As a further step, we will
use direct information about the fruit themselves: their present
state of ripening, given the emission of ethylene gas, which is
an indicator for fruit ripening and also a ripening hormone that
triggers the ripening process of many kinds of fruit [4].

1530-437X/$26.00 © 2010 IEEE
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Fig. 1. A general view of a cognitive system.

In order to perform the tasks described above, the sensor net-
work has to do much more than measuring the temperature and
sending data; this type of advanced sensor is referred to as “intel-
ligent sensor.” We adopted this terminology when we called our
project “Intelligent Container.” However, it remains rather un-
clear what this “intelligence” really means. The term “intelligent
sensor” may just refer to a pressure sensor with a linear compen-
sation of the cross correlation to temperature, or it may call for
complex data evaluation and decision support tools. Upon closer
inspection, we realize that the features we are implementing in
the container network are much better described as cognitive
features.

Cognition science investigates the mechanisms that intelli-
gent actions are based on [5]. A very general view of a cog-
nitive system is shown in Fig. 1. The system is embedded in the
environment. The internal states of the system are established
from two sources: the data received from the outside, on the one
hand, and the internal processes, on the other; such processes
may be calculating representations, performing internal com-
munication, and self-evaluation. The system is open to signals
from outside, but the system behavior is not determined by that
external information alone. The external information is assimi-
lated in the system, of course, but it is not any longer defining
the internal states in a deterministic way. Thus, a new perspec-
tive, looking at sensor systems primarily as data processing sys-
tems assimilating information from the physical world would
be much closer to reality. Being nondeterministic and “opera-
tionally closed” are considered to be key features of cognitive
systems [6].

After these general considerations, we will present the specific
research results. This paper is organized in the following way. In
Section II we describe our own work performed in the Intelligent
Container Project. Since the topic is very wide, we cannot go into
detail for all important aspects. The key features of the decision
support tools and the most recent experimental results are pre-
sented. In Section III, we are looking at our R&D work from the
new perspective of cognition. The approach of cognitive science
led us to a new understanding of our system. As shown in Fig. 12,
a circular process provides a better description of the high level
data processing capabilities than the feedforward only approach
(Fig. 11) we used until now. The feedforward approach can be
used for systems with strict deterministic behavior. The decision
support tools that we have been developing consider the data in
the history of the transported goods. Furthermore, they use strong
nonlinear functions for the ripening processes. For these two rea-
sons, we cannot predict what the decision in a specific case will
be. This aspect of indeterminism can be understood using our
new model including circular processes.

Fig. 2. Communication infrastructure.

II. THE INTELLIGENT CONTAINER

The intelligent container provides remote supervision of the
spatial distribution of transport parameters. This section starts
with an overview of the required hardware and communication
infrastructure.

Although we combine commercially available hardware
components, there is still no ready-to-use solution on the
market. The general methods for the processing of sensor
data are well known, but they have not been applied to the
use-case of monitoring of cool-chain transports. The main part
of Sections II-C–II-E summarizes the efforts and results of our
work group to adapt and tailor these methods to the intelligent
container. The cognitive features of the intelligent container
are not related to a single method, but rather to the container’s
ability to apply and select different approaches depending on
the situation. The different methods are combined to a deci-
sion-support-tool (DST), which is executed on an embedded
processor platform inside the container, or even on single sensor
nodes. A software framework is introduced, which allows to
integrate and dynamically update the different elements of the
cognitive sensor system.

Finally, some selected experimental results are presented
(Section II-F) in order to illustrate the need for spatial tem-
perature supervision, the performance of the internal wireless
network, and the system’s capability to detect disorders by
an ANN. It has to be stated that the supervision system on its
own, without a DST, brings only little benefit: communication
channels would be overloaded due to lack of data filtering and
sensor batteries would discharge quickly due to unnecessarily
high measurement frequencies.

A. Communication Infrastructure

The intelligent container system consists of the following el-
ements: a wireless sensor network that measures spatial devi-
ations of environmental parameters inside a container; a com-
munication gateway which operates as a bridge between the
internal wireless sensor nodes and external networks. A web
server gives access to the data by means of a graphical user in-
terface. The system can also be applied inside trucks, or even
warehouses, with slight modifications. All these hardware plat-
forms can be made ‘intelligent’ by using their microprocessors
to execute part of the DST. Fig. 2 gives an overview of the com-
munication infrastructure.

Our wireless sensor nodes are based on the TmoteSky/TelosB
platform [7]; a combined temperature and humidity sensor is
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mounted outside the water protected housing. A microma-
chined, low-power flow sensor [8] is planned for the future. The
TinyOS operating system provides access to the functions of
802.15.4 radio protocol, which uses 2.4 GHz frequency range.
Because of the high signal attenuation of water-containing
food products, the sensor nodes have to forward messages
over multiple hops to the gateway. The main challenge for the
development of a protocol for battery powered sensor nodes
is to keep the radio-up-time as low as possible. The ZigBee
protocol, which is based on the 802.15.4 standard, provides
only marginal flexibility. Sensors nodes can either operate
as a forwarder in a multiple hop network, or implement a
power down mode. Specialized protocols that directly access
802.125.4 layer provide much better performance.

In total, 16 sensor nodes per container were packed inside the
goods. Four additional nodes were placed on top of the pallets or
mounted on the container wall in order to improve the network
connectivity.

Each container (truck, ship, etc.) is equipped with a commu-
nication gateway that collects data from the internal sensor net-
work and provides a platform for the major part of the DST. A
networks manager detects which external networks are available
and selects one according to its cost and reliability [9]. Commu-
nication is secured by a VPN-Tunnel (Virtual Private Network).
GPRS or UMTS are normally used during road transportation
for external communication. However, during sea transporta-
tion, the ship’s existing satellite system is used. The gateway is
powered by the truck engine or uses the same power supply as
the cooling aggregate. Because of the higher energy consump-
tion, gas sensors are typically applied at the gateway level. Cur-
rently, the power supply of the gateway is buffered by a large
capacitor to ward off the disturbances on the power line, but the
capacitor should be replaced by a rechargeable battery in order
to bridge phases with disconnected power during transshipment
of the container.

Because of the high price of sensor nodes at the present
time, it is not viable to equip every pallet or box with such
a device. Passive RFID labels provide a much cheaper solu-
tion for tagging single items. An RFID gate at the container
doors, connected to the communication gateway, supervises
the loading process. The RFID tags provide information about
the kind of good, allowed temperature range, and the required
type of supervision. The gateway has to assign items, which
are equipped only with a passive RFID tag, to an active sensor
in its neighborhood. The required localization is based on
radio-signal-strength information (RSSI) of the RFID reader
and the sequence of loading.

Fig. 3 shows the reduced scale prototype of the intelligent
container with its RFID reader on the right side, sensor nodes
in the middle, processing platform on the back wall, and the
communication gateway on the left wall.

Although the system is still in the state of research and pilot
tests, the finial system costs can be estimated as follows: 20
sensor nodes at a price of 30 Euros each, a gateway at 800 Euros,
software, and general costs sum up to a total cost of 2000 Euros
per container at present. It is expected for the price to drop to
below 1400 Euros if the number of sold units increases. If we
assume eight transports per year over a lifetime of seven years

Fig. 3. Reduced scale prototype of the intelligent container.

and maintenance costs of 200 Euros per year, the cost of own-
ership is estimated at about 50 Euros per transport. The usual
sea-freight rate for the transcontinental shipment of 15 tons of
goods inside a refrigerated container is about 4000 Euros. The
value of the load is typically between 10.000 and 40.000 Euros
for fruits, but can increase to several million Euros for pharma-
ceutical products. Compared to these costs, there is a clear busi-
ness case for an investment of 50 Euros per transport, if thereby
the risk of losses by undiscovered temperature deviations is re-
duced. Furthermore, the traceability is improved. It can also be
assumed that the companies that apply a concise transport super-
vision system may get a discount on their insurance premiums.

B. State of the Art

Several studies [e.g., [10] and [11]] of local temperature devi-
ations inside the cargo hold have been carried out recently with
data loggers, which provide only “offline” access the recorded
data after the end of the transport. However, these studies clearly
substantiate the necessity for spatial monitoring. Local tempera-
ture deviations in the range of 2 C and 12 C were found inside
trucks and containers.

Standard telemetric systems do not provide the functionalities
for the detection of these local deviations. They provide only re-
mote “online” access to the supply and the return air temperature
or a maximum of four sensors, which is far too low to put the
concept of the intelligent container into practice. Several new
projects for remote container supervision were triggered by the
Container Security Initiative of the American of Homeland Se-
curity after September 11, 2001, but their main focus lays on
the detection of unauthorized opening of the doors and intru-
sion detection by motion sensors, not the online supervision of
perishable goods. Commercial products like the SeCureSystem
by EADS Astrium [12] and the Container Security Box [13]
provide interfaces for external sensors, but have not been tested
for spatial temperature monitoring so far. The secure trade lade
project by IBM [14] for transport monitoring with ZigBee sen-
sors was stopped after initial tests. Ruiz-Garcia [15] reports of
a further test with ZigBee-based sensor nodes, but only one of
the four installed sensors could successfully deliver its data to
the gateway.

The development of multihop protocols based on the 802.15.4
standard is an active research area. Boano [16], for example, lists
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and compares five different protocols. Since most of these pro-
tocols were not available at the start of the intelligent container
project, we developed our own that provides more flexibility for
reading out performance and signal strength data. Further re-
search has been carried out on the localization inside sensor
networks. Zanca [17] experimentally compares four different
methods to calculate the position of a sensor node by the re-
ceived radio signal strength from a number of anchor nodes with
known positions. For less than ten static anchor nodes the av-
erage error of the estimated position is greater than 3 meters for
all methods. However, correct assignment of pallets to available
storing positions inside a container requires an accuracy better
than 1 meter.

The intelligent container is much more than a new technical
system for wireless supervision; it is rather an application plat-
form for up-to-date methods for sensor data evaluation.

Several mathematical models have been developed by food
science research to predict quality changes as a function of the
temperature. The speed of chemical reactions, as decay pro-
gresses, depends on the current temperature and their specific
activation energies as described by the law of Arrhenius. A
generic model by Tijskens [18] calculates the loss of shelf life
for agricultural products by a combination of two Arrhenius
functions. Quality loss of meat products is approximated by
calculating the exponential growth rate of spoil microorganisms
[19]. However, only a few of these models have been integrated
into a sensor system so far. Beyond the application in our
project there are only few types of data loggers [20] which
implement a simple Arrhenius model.

The situation for the analysis of spatial temperature data is
similar to the state of implementation of the shelf life algo-
rithms. There are several methods available, especially, from
the fields of geologic statistics and artificial neural networks
(ANNs), but they have not been applied to detect local temper-
ature variations in cool chain transports.

The problem that the number of probe points is insufficient
for the calculation of the spatial distribution of an environmental
parameter is well known in geological research. However, there
are only very few examples for application of the related geosta-
tistical methods for spatial interpolation of temperature data in
wireless monitoring, e.g., [21]. A simple approach for interpo-
lation is to multiply the measured values of neighboring sensors
by a weighting factor that is proportional to the inverse-squared
geometrical distance between the sensor and the test point. The
Kriging method [22] provides a more accurate way: it estimates
the weighting factors as a function of the Variogram that de-
scribes the statistical dependency of expected temperature dif-
ference between pairs of points as a function of their geometrical
distance. As the first step in Kriging, the Variogram function
has to be estimated by calculating the variance between pairs of
probe points with the same distance. In the second step a linear
matrix equation has to be solved to determine the weighting
factors.

An ANN is a massive parallel computing structure, based on
information encoding and processing, which functions like bi-
ological neurons [23]. The ANN is able to learn a continuous
process in order to approximate the future events based on rela-
tionships within the training data. Number of input sets, accu-

racy of the training, and parameters of the network greatly in-
fluence the accuracy of the approximation. There are two main
ANN approaches for parameter approximation: “radial basis
function” (RBF) approach and “multilayer perceptron” (MLP)
that incorporates the backpropagation technique. Considering
flexibility and nonlinear mapping features, ANN is applicable
for data approximation and classification in transportation sys-
tems. An automated food inspection system is an example to
use neural networks in intelligent food transportation indus-
tries [24]. Moreover, when wireless sensor networks are uti-
lized, neural networks could be implemented for data fusion
[25], [26].

The multitude of available methods for sensor data evalua-
tion requires an appropriate software platform. The DST may
conclude that it is necessary to upload and install an additional
method, depending on the current situation. For example, if a
sensor fault is detected, the measurement at this point has to
be replaced by a spatial interpolation. Therefore, the platform
has to support dynamic loading of updated software as a funda-
mental requirement. This feature is one of the main ideas of the
Java programming language. Furthermore, Java supports the
coexistence of different processing hardware by its platform
independence. The use of an existing software framework sim-
plifies the programming of new DST functions. The DST for
shelf life evaluation can be programmed as a mobile software
agent [27]. The Java-based JADE Agent framework provides
mechanisms for agent migration and communication. The Open
Source Gateway initiative (OSGi) framework [28] provides
similar features, but its implementation uses the processing
recourses more efficiently. OSGi allows installing software
bundles on a remote embedded system.

The following subsections describe how we have adapted and
implemented the above methods as elements of a DST in order
to form a cognitive system for transport supervision.

C. Adjusting the Focus of the Sensor System

A cognitive sensor system can adjust its focus on critical
spots, prolong the measurement interval of sensors, which do
not provide crucial information, or put them temporarily into
sleep mode.

As a prerequisite for these decisions, the sensor system has to
be aware of the location of the sensor nodes inside the container.
Inside a packed container it is almost unfeasible to carry out a
localization by comparison of radio signal strengths. The stan-
dard localization methods do not provide satisfactory accuracy,
and the signal attenuation is unpredictable and too high due to
its dependence on the loaded cargo. But, because the position of
the pallets do not change during transport, it is sufficient to esti-
mate them during the loading process. Four RFID antennas are
mounted on the container door to scan for newly loaded pallets.
By comparing the signal strengths of the four antennas the pallet
is assigned to one of four cells (left, right, up, down). This in-
formation is combined with a record of the sequence of loading
to determine the final position of the pallet [29].

The sensor system has to supervise itself to determine
whether a sufficient number of sensors for crucial environ-
mental parameters are activated with a sufficient measurement
interval at the necessary spatial positions. The system can
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decide to turn on sensors that are currently in sleeping mode or
to send a request to the transport operator to place additional
sensors in the cargo hold.

The temperature of items not presently equipped with an own
sensor can be estimated by spatial interpolation. The Kriging
method was applied to a set of 40 sensors that were installed
inside one compartment of a loaded delivery truck [30]. The es-
timated Variogram shows that a temperature deviation has an in-
fluence on its neighborhood with a radius of 2.8 meter. The type
and the radius of the Variogram changes only very little between
different tours of the same vehicle. For subsequent transports
with a similar loading scheme the application of the Kriging
method can be simplified. The weighting factors can be applied
to the new measurements without modification because they de-
pend only on the Variogram.

In order to evaluate whether the sensor density is sufficient to
provide an accurate interpolation, the system can compare the
actual measurement of one sensor with the interpolated predic-
tion for its position. A high value for this residual indicates that
the number of active sensors has to be increased. If for example
the number of sensors is reduced to 20, the average residual rises
to 1.1 C.

However, Kriging provides a more advanced way to estimate
the interpolation error. The so-called Kriging-Variance gives a
prediction for the expected interpolation error for any point in
space inside the container. The sensor system can scan for points
with high Kriging-Variance and decide whether the tolerance is
acceptable.

A sensor could give a wrong measurement caused by low
battery voltage or sensor damage due to the tough conditions
of food transports with mechanical stress and air humidity of
almost 100%. The above described residual between measure-
ment and interpolation can also be applied to detect faulty sen-
sors by plausibility checking. A high residual value could mean
one of the following: a) the spatial sensor density is too low;
b) the sensor is faulty or has a high tolerance; or c) there is
a local physical cause for the deviation, e.g., a “warm” pallet
was loaded into the container or an unwanted ripening process
started inside a fruit pallet and creates a large amount of heat by
conversion of starch to sugar.

The probability for case a) is low if the residual is much higher
than the expected deviation according to the Kriging-Variance.
Further classification and comparison with typical fault situa-
tions from previous transports is necessary in order to discern
between cases b) and c).

Alternatively, the plausibility of the records could be evalu-
ated by knowledge-based algorithms, as shown in Fig. 4, to eval-
uate the sensor records inside a container including two main
zones (A and B) [35].

The plausibility-checking algorithm could be applied either
locally to evaluate neighboring sensor nodes in each cluster, or
globally to process the neighboring clusters to detect any abnor-
mality in the sensor network. The required intelligence of each
sensor node to evaluate the collected records varies depending
on the desired data processing level.

The local plausibility-checking was implemented by a two-
stage artificial neural network (ANN) algorithm. The first ANN
implements the approximation mechanism, the second a clas-
sification algorithm [31] as shown in Fig. 5. At first, a multi-

Fig. 4. Knowledge-based plausibility checking in the intelligent container.

Fig. 5. Data approximation and classification in a wireless sensor network
using ANN.

layer-perceptron neural network calculates a prediction based
on the current measurement of the three closest neighbors; a
dynamic sliding back-propagation is used to train the approxi-
mation network, which depends highly upon the last few records
of the sensor nodes. Due to nonlinear mapping features, the pro-
posed network led to more accurate results compared to the clas-
sical data approximation approaches like least squares [31]. The
approximation residual is given by the difference between ANN
prediction and the actual measurement.

To design the approximation network, two hidden layers are
taken into consideration, while an output layer merely sums the
weighted data. Various network architectures and parameters
were tested to optimize the network to approximate the records.
The number of first hidden layer units varied between 2 and 9;
and the number of second hidden layer units varied between 2
and 5. The results showed that in the majority of cases, it is



LANG et al.: THE “INTELLIGENT CONTAINER”—A COGNITIVE SENSOR NETWORK FOR TRANSPORT MANAGEMENT 693

Fig. 6. Loss per day of shelf life for typical food products.

preferable to use four neurons in both hidden layers to approx-
imate the data of each sensor using three neighboring sensors
[31]. However, by using fewer neurons, the mapping is less pre-
cise, and using more neurons is unfeasible due to increased sat-
uration in data mapping, calculation time, and power demands.
Furthermore, using two hidden layers increases the nonlinear
mapping feature between input pattern and target [31].

The second neural network uses a radial basis function struc-
ture to classify the approximation residual (as plausible or im-
plausible) considering the correlation factors between sensor
nodes. The probabilistic neural network estimates the “proba-
bility density function” for each class based on the given training
samples.

For example, a simultaneous rise of relative humidity and
temperature indicates that warm air with high absolute humidity
penetrates through an open door, whereas falling relative hu-
midity indicates a local warming without air exchange. A cogni-
tive sensor system should also adapt its measurement intervals,
if necessary. An intelligent sensor predicts the slew rate for the
change of an environmental parameter by an ANN with the four
last recent samples as input parameters [32]. The interval to the
next measurement is set in a way that the expected change of the
parameter during the interval is lower than a tolerance threshold.

D. Evaluation of Sensor Data

Apart from adjusting the focus, the main task of the deci-
sion support tool is to evaluate the effects of environmental pa-
rameter deviations on the product quality. The shelf life algo-
rithm from Tijskens [18] was taken as an example. The algo-
rithm was transferred into a form, which allows updating the
shelf life value on-the-fly with only few mathematical opera-
tions after each temperature measurement. The loss of shelf life
per day is calculated as a function of temperature. Fig. 6 shows
the loss-per-day curve for some typical fruits and vegetables.
The current loss per day is subtracted from the initial shelf life.

This algorithm can run as a software bundle or an agent as part
of the DST on the gateway unit inside the container or directly
on individual sensor nodes. The typical hardware of wireless

Fig. 7. Transfer of the mobile DST.

sensor nodes provides only little processing power. Mathemat-
ical calculations are restricted to integer operations. Therefore,
further optimization of the shelf life algorithm had to be car-
ried out [2]. The algorithm has already been implemented on a
commercial sensor node from Ambient Systems [33]. The DST
decides on the bases of prediction for the remaining shelf life,
whether the goods are in proper condition or the logistic plan-
ning has to be adjusted in order to prevent losses by decay.

E. Implementation of the Decision Support Tool

Simple functions of the DST can be implemented at the
sensor level, but more complex decisions have to be performed
on the gateway level. A part of the DST is permanently imple-
mented, but special functions can be installed upon request as in
the following examples. a) The system detects one faulty sensor
and requests for a Kriging tool to interpolate temperature and
humidity at the missing position. b) The RFID reader informs
the system that a new kind of good was loaded. The systems
download a specific shelf life model.

The latter example leads to the idea of a mobile DST, which
accompanies a freight item along its course through the logistic
chain. The DST contains specific instructions, how temperature
and quality deviations should be handled. Furthermore, it con-
tains the temperature history and transport information as part
of an electronic way-bill. Fig. 7 illustrates process of transfer-
ring the mobile DST. New freight items are detected by an RFID
reader. The truck or container sends a request for the DST that
represents the loaded freight item. The request is answered by
the last processing platform, which executed the DST software,
and transfers it to the new means of transportation.

So far, the above described cognitive features are imple-
mented and tested in separate software frameworks, but our
aim is to provide them on a fully integrated OSGi platform.

F. Experimental Results

The remote supervision of spatial temperature deviations and
the newly developed BananaHop protocol for communication
inside the sensor network were tested during the transport of
two containers, loaded with Bananas, from Costa Rica to Ger-
many [34]. This experiment provides another proof for the ex-
istence of spatial temperature in almost all transport situations.
Especially the duration of the “cooling-down process” varied
tremendously for different positions inside one container and
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Fig. 8. Comparison of core temperatures for different positions and containers.

also between the two supervised containers. Fig. 8 shows the
decline of the core temperature over time for pallets close to
the door and those at the opposite end of the container. Pal-
lets, which stood close to the refrigeration unit, required 58%
less time for cooling-down than those at the door end. The av-
erage temperature differences over the length of the container
were 1.85 C and 2.03 C, respectively. The maximum tem-
perature difference of 4.98 C was observed in the second con-
tainer, 2.1 days after leaving Costa Rica. Although both con-
tainers were of the same type and used identical refrigeration
units, the cooling-down was 38 % faster in container 2.

The experiment also showed that concise temperature su-
pervision is impossible without additional sensors inside the
freight. The built-in sensors of a standard refrigeration unit
measure only the supply and the return air temperature, but
not the freight temperature. The supply air temperature stayed
almost constant at 13.75 C. The state of the cooling process
can be verified by the difference between the return and the
supply air temperatures, but it is impossible to conclude the
pallet core temperature if the only available measurements are
the latter two.

During the two weeks of transport the battery voltage of the
sensor nodes dropped from 3 to 2.77 Volts, which is still above
the minimal required supply voltage of 2.4 Volt. The power
consumption mainly depends on the interval between radio
transmissions. If the interval is extended from the current 2 to
15 min, the sensors could operate for several months without
maintenance.

In order to evaluate the signal attenuation inside the con-
tainer due to water-containing food products, a supplementary
feature was added to the sensor node software. For each sam-
pling interval, the nodes kept a record of all neighbors from
whom a transmission was received. After the end of transport,
the records were combined for an analysis of possible routes
within the network. Fig. 9 indicates the existing links between
pairs of sensors and their packet rate (lines between boxes), as
well as the percentage of messages that were actually deliv-
ered by the BananaHop protocol [34] to the gateway from each

Fig. 9. Protocol performance and links between sensors.

sensor (numbers inside boxes). Although the vertical distance
between sensors inside one pallet was only 0.5 meters, two sen-
sors were completely disconnected from the network due to the
high signal attenuation. The maximum transmission power of
the TelosB platform is only 1 mW. Future experiments should
make use of a platform with higher radio power, such as the
ZigBitAmp from Meshnetics.

In total 76% of all the sent messages arrived at the gateway.
Part of the losses was due to inappropriate routing. However, an
analysis of the combined link data showed that the route to the
gateway was physically interrupted for certain number of inter-
vals and no alternate route existed. The probability for the latter
case was calculated to 20%. This implies that the BananaHop
protocol lost 4% of all messages during this experiment due to
inappropriate routing.

The BananaHop protocol uses a simplified method to esti-
mate the quality of links to the neighbor sensor nodes. The link
quality is calculated as a function of the signal strength (RSSI)
of the last received beacon. Routing losses are mainly caused by
wrong link estimation. One option to improve the link estima-
tion would be to send additional ping-messages to the neighbors.
But, by adding cognitive features to the routing mechanism, the
performance could be improved without increasing the number
of control messages and thereby reducing the energy consump-
tion. Such a cognitive sensor node could detect inappropriate
routing by the fact that it does not receive acknowledgement
messages for its transmitted sensor data. The sensor can then try
to adjust its model for estimation of the neighbor link quality,
e.g., by modifying the thresholds to discern between “good” and
“weak” links.

The performance of the ANN-plausibility check was tested
with the data of an experiment inside a refrigerated truck at the
premises of the University of Bremen. Two faults were simu-
lated including: a) battery failure of a sensor by removing its
power supply and b) a temperature disturbance by opening the
door. Fig. 10 shows the experimental results of a two phase test
inside a real truck [35]. First phase models the internal faults
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Fig. 10. Approximation residuals during the test. (a) First phase. (b) Second
phase [35].

Fig. 11. A classical sensor system.

such as battery discharge and disconnection of the communica-
tion link. They occur at 55th, 70th, and 85th min within 10 min
for the first, second, and third sensor nodes, respectively.

The second phase begins at 120th min and lasts until 240th
min. The doors of the truck are opened once at the 120th min
for 2 min. Thereafter, the doors remain closed until the 178th
min, after which they are reopened for 4 min until 182nd min
and then reclosed [35]. As shown in Fig. 10, the approximation
of faulty sensor nodes shows large deviations from the actual
values, which could be detected by classification mechanism.

The next section discusses these cognitive features from a
more general perspective.

III. COGNITIVE FEATURES IN THE SENSOR NETWORK

A classical sensor system works, as shown in Fig. 11. There is
a direct path from the physical phenomenon such as temperature
to the electrical sensor output. The characteristics of the sensor
should be strongly deterministic.

An advanced sensor system is shown in Fig. 12. There is a
second layer of data evaluation, and there are circular processes
or feedback loops between the layers.

Fig. 12. The new approach to a sensor system applying cognitive features.

One feedback loop may be used for efferent control, when
the sensitivity of the sensor element is changed according to
the signal strength. Efferent control is known from biology: the
human eye adapts to light, the ear adapts to noise. It is possible
to reduce the voltage of a capacitive microphone when the sound
levels are too high. This reduces the sensitivity, but it does not
prevent mechanical stress on the microphone membrane. In bi-
ological systems, the change of sensitivity is done on the hard-
ware side. If light is too strong, the iris of the eye closes. The
sensitivity is reduced and the retina is protected simultaneously.
This type of control acting on the physical part of the transduc-
tion mechanism is very rarely used for technical sensor systems
so far.

The most important new feature is the new level for higher
functions of data evaluation. The data are synthesized to gen-
erate a view of the status (“theses apples will be ripe in two days,
temperature and humidity are in range”). Specific knowledge
(specific shelf life models for each kin of fruit) and historic in-
formation (quality of the fruit at the time of loading) are consid-
ered. If the sensor network does not have this specific informa-
tion available, it may retrieve it from an external source. Based
on this, the system can make decisions. Estimating a remaining
shelf life is a decision, also approving a situation as OK versus
triggering an alarm. Plausibility checking is used for self-eval-
uation. Can I believe the sensor elements? Do I have enough
sensors and the sensors appropriate to control the situation?

Under certain circumstances, the system has to change the
mission of the sensor network. If a dangerous situation is de-
tected, e.g., gas sensors report that they detect traces of gases
emitted by mildew, then more information about the humidity
situation is needed. A reconfiguration has to be performed. Par-
ticular sorts of reconfiguration are being investigated or imple-
mented for the intelligent container:

— When measured values change faster than expected, the
measurement interval can be dynamically adapted [32].

— Sensors in energy saving sleeping mode can be aroused.
— Sensors identified as possibly unreliable may be replaced.
— During loading, the system can ask for more or other sen-

sors to be supplied before the transport is started. This way,
it dynamically adapts to the goods and the situation.

— Hazards for safety and security may cause the exclusion of
compromised motes.
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These features are similar to the active perception in biolog-
ical systems as described by Schill [36]. Active perception en-
ables biological systems to exploit their limited resources of
recognition capabilities in an efficient way in order to make con-
clusions about a current state.

The circular sensing model illustrated in Fig. 12 shows a
number of analogies to the above-described properties of ac-
tive multimodal recognition in humans. As in human cogni-
tion the recognition of the current state of the intelligent con-
tainer is determined not only by bottom-up sensor information,
but also by top-down knowledge and task-related information.
Top-down information is used in the form of the interpretation of
the system status together with the history, conclusions drawn,
and decisions made. This top down information together with
the bottom-up sensor data determines the evaluation of the cur-
rent state. Moreover the sensor network used is not static, but
can be reconfigured based on the current state. Similar to mul-
timodal biological systems that direct the limited recognition
capabilities towards informative features and use the combina-
tion of information from different modalities, an advanced in-
telligent container might react on a trace of gas which could
be the metabolite product of a fungus or mildew by waking up
some humidity detectors presently down in sleep mode for en-
ergy saving.

The project of the intelligent container is part of a larger ini-
tiative at the University of Bremen that is concerned with au-
tonomous processes in logistics [36]. A logistic item such as a
parcel shall have the information and the decision power to orga-
nize itself and to choose its own way through transport or produc-
tion processes [37]. Autonomy in logistics is expected to improve
performance and robustness for very large tasks which cannot
be controlled by a central unit due to their complexity. Three
important criteria for autonomy in logistics are given in [38]:

1) Decentralized decision making in heterarchical structures.
2) Interaction of the elements.
3) Nondeterministic behavior and positive emergence.
In the case of the sensor network, these criteria are closely

linked with cognitive structures. The internal processes for cal-
culating representations and for self-evaluation not only render
the system nondeterministic, they also are the basis for decen-
tralized decision making. The application of cognitive structures
to the sensor network is thus a necessary prerequisite for it to act
as an enabler for autonomously operating logistic processes.

IV. SUMMARY AND OUTLOOK

The intelligent container is a complex sensor network appli-
cable in logistics, especially, if perishable goods such as fruits
are transported. To begin with, the sensor network measures
the important transport parameters such as temperature and hu-
midity with a special resolution superior to the one implemented
today. Next, it documents transport parameters such as acceler-
ation. Then, it looks at the status of the goods. For fruits this is
done by measuring the amount of ethylene gas emitted, which
gives information on the status of the ripeness.

These measurements are the input for data evaluation on
a higher level. The status of the fruits is estimated with fruit
ripening models. They use the temperature history measured
by the container, and also the data about the history before

the fruits have been loaded, which is stored in an electronic
way-bill. Based on these data, the remaining shelf life time is
estimated and continuously updated. A second class of high
level processes concerns the self evaluation of the system.
Using plausibility checking, faults in measurements are found
and corrected. This way the sensor network may change its
configuration autonomously during the operation.

Due to the observance of the history of the goods, the high de-
gree of nonlinearity of the ripening models, the complexity of
the decision support tools, and possible reconfiguration there is
no way to predict the decisions the container will come to during
transport. This aspect of indeterminism is known to logistic sci-
ence, and it is considered to be one of the main features of au-
tonomous or self-monitoring systems. It is also well known in
cognition science. Cognitive systems perform large amounts of
data processing and transfer within the system (Fig. 1). External
information influences the system, but does not determine it.
This model is proposed as a new approach for the understanding
of complex sensor systems (Fig. 12).

Why do we apply this much of local evaluation and com-
plexity? First, in this specific application, autonomy is a must. In
general, a container in the sea cannot be controlled from a cen-
tral station since communication cannot be guaranteed. Second,
even if there is a communication path, bandwidth is too small to
send all the data, making local data reduction and on-site eval-
uation unavoidable.

For an outlook, where does this research aim at? The intelli-
gent container will be an enabling tool for the new logistic par-
adigm of FEFO. Taking into account the remaining shelf life,
we expect better quality of the goods for the customer, less loss
during transport, and thus a reduced CO footprint.

At the moment, the system has been developed and tests
are being performed. The Intelligent Container Project is now
leaving the research phase and moving in to transfer and appli-
cation. Results of the first field test performed with fruits on a
ship en route from Middle America to Europe will be reported
soon.
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