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Abstract. This paper presents the development and implerti@mtaf energy-
efficient parameter adaptation for a grey-box maegkresenting the tempera-
ture profile in spatial points of the interior ofrefrigerated container with the
aim to improving the logistics of perishable goodlanixed linear / non-linear
singe-input-single-output grey-box model was selédbr accurate prediction
of the temperature behavior of the loaded food petsl The algorithms were
specially modified to reduce the matrix dimensioimsplemented in Matlab,
and applied to experimental data for validationagrom being highly accu-
rate, the predictions comply with the desired feguof merit for the implemen-
tation in wireless sensor nodes, such as high tobss against quantization and
environmental noise. The OSGi framework, whichafiofor easy update of
software bundles, was selected as basis of theva@ftimplementation on the
iMote2 as sensor network platform. Performance oreamsents have shown
that this method provides a fast and accurateigifed with high energy effi-
ciency.

Keywords: System identification, temperature, organic heaedback-
hammerstein, OSGI, Java.

Introduction

Research has been done in the past to estimatertiperature profile inside refrige-
rated containers. Several options have been imatsti: mathematical approaches as
presented in [1], k- models as proposed in [2], and several numericalets as re-
viewed in [3]. With the exception of [4], in whidhe effect of the pallets is consi-
dered; usually the focus is put on the cold aiwflas the main factor governing the
temperature pattern inside a container and thetsftiue the cargo presence is sub es-
timated.

Babazadeh [5] suggested an approach that takesféwt of the cargo to the tem-
perature into account. He proposed the use of @gsesensor nodes (WSN) to meas-
ure the ambient parameters in the surroundings sifadial point of interest and the
use of system identification to estim77ate the patars of a linear Multi-Input Sin-
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gle-Output (MISO) system and concluded that in otdéhave a good estimation, it is
necessary to have a high number of training sangrldsmany inputs to the system.

In this paper an alternative Single-Input Singletfiiti (SISO) grey-box model is
presented to predict the temperature inside th&agwar under the presence of perish-
able goods with the aim of reducing the compleaitg preserving the accuracy. The
proposed model provides a meaningful descriptiotheffactors involved in the phys-
ical system including the effect of transportingrig goods such as fruits and vegeta-
bles. The starting point is based on the physigialtions; subsequently, a tuning pa-
rameter for the specific case of bananas is foynslrhulations.

Model of the system

The factors affecting the temperature distributimside a refrigerated container are il-
lustrated in Figure 1. The cold air flows from loatt to top through the gratings in the
floor and through the spaces between the pallats.eaentually the air is drawn off
the channel between the pallets and the conta@ikng:

A naive representation of the container can be dyna SISO linear dynamic sys-
tem in which the input is the air supply and thépotiis the spatial point of interest.
However, in reality this is only a simple modeltbé main contributor to the tempera-
ture pattern, the air flow. Several other factffect the speed of the cooling down.

To improve the accuracy of the model, other contdbs are considered as well:
first is the heat, produced by respiration of liyigoods such as fruits and vegetables;
second is the thermal loss, affecting the corredliog of the goods; finally, unpre-
dictable temperature variations due to highly clggxternal climatic conditions

during transportation. .
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Fig. 1. Factors affecting the temperature inside a refaige container.

The linear SISO black-box model which represents #ir flow is represented
mathematically by a linear dynamic system H, ia tliscrete domain, given by the
Equation 1.

a7 1B(q71)

H@™) = =5

1
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Wheren, andn, are the orders of the system polynomials,. b,,,, a; ... a,, are the
polynomial coefficients, and is the delay operator in discrete domain.

An attenuatoro ,models the isolation loses of the air supply terafure and is
modeled to affect the input of the dynamic systeéhe external climatic conditions
are unknown in advance, therefore considered est&tat process. The output of the
Moving Average (MA) process, which is in fact whiteise (WN) filtered by the fil-
ter C represented in Equation 2 added to the outpthe dynamic system, models
them.

C@H=1+aq "+ .4y q™™ )

To model the organic heat, it is necessary to ugeranental data. Figure 2 [6]
shows a family of curves for organic heat in theecaf bananas. A proportional
relationship between of the organic heat and fhgening state is observed.
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Fig. 2.: Heat Production of bananas.

Equation 3 represents the organic heat relatioh wispect to the temperatur,.;,
is the heat production in Watts,s a constant which is fixed for a certain typdratft
and rippening-state in ¢, T is the fruit temperature AC, andp is a scaling factor
which depends of the amount of food and is givekilograms.

Pf‘ruit = ﬁeyT 3)

Finally, the block diagram to represent the inputpat relations of all the factors is
built. It is shown in Figure 3. The air flow dynarsiare represented as a feed-forward
block as it is the most important contributor. Tikelation losses affect the correct
cooling of the goods before the dynamic system #mel noise effect has an additive
effect on the output.
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The contribution of the organic heat depeodshe cooling temperature inside
the container. Simultaneously, it has a small addiéffect in the input of the linear
dynamic system as the air flows through the paleid is slightly warmed. It is
represented by a static exponential feedback. &bgting block diagram, in which a
linear dynamic system has a non-linear feedbackesponds to a Feedback-
Hammerstein (FH) configuration [7].
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Fig. 3. Model of the system

Parameter adaptation algorithm

In [7] a Parameter Adaptation Algorithm (PAA) wasvdloped to identify the

parameter-set of a FH system. It uses an interneestaiabley(t) and converts the

non-linear system into a pseudo-linear one. Itqgpal advantage is that the
conventional recursive matrix-based linear systdemiification algorithms as those
presented in [9] can be applied to estimate tharpater matrib®. The recursive form

of those algorithm is given by Equation 4. Wheitg) is the prediction error as
described in Equation 5, P(t+1) is an adaptatiatrimto perform the minimization

of ¢ using Recursive Least Squares method, @@l is the observation matrix that
contains the input and the output dagft + 1) in Equation 6 is the so called
Forgetting Factor (FF).

O(t+1)=0(t)+(P(t + 1)<p(t))Ts(t) 4)
e(t) = y(t) — O(t) @(t-1) (5)
PO-PO@T (—pm P(f)
P(t+1)= ®) ()('p;it_('—ql))P(p-}-A(t'Fl)) )
ME+1) = * A +1 -4, 7

Guo [7]considers the non-linearity as a polynorofabrderl as shown in Equation 8;
however, the dimensions of the matrices in therdlym would be significantly too
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large to be applied in platforms where power corgion is an important figure of
merit.

n(y(©®) = ko ey () (8)

In order to reduce the dimensions of the matritesas proposed to use the exponen-
tial term in Equation 3 insteagl.is to be determined and it remains constant, while
is a parameter to be identified as it depends erathount of fruit being transported.
The linear term of the Equation 8 needs to be etdthto be included in the
polynomialA*(g~1) of the equivalent SISO pseudo-linear system. Etipanit into a
Taylor series and rearranging, the summation ofribe-linear coefficients of the
exponential function can be calculated using Equa$i. The non-linear coefficients
and an offset are on the left hand of the equation

o @yENk
i, PO +1= 7O —yy(t) ©

The equivalent pseudo-linear system for an expdaenbn-linearity is shown in
Equation 10.

A@DyO= biau(®) +b, e —by(©) + Ty + g He®  (10)

The resulting coeficients of the polynomiad$(q~1) and B*(q~!) are given by
Equation 11 and 12.

a; = ai — (By)by (11)
B*(q™") = b,q™* + ..+ by, g™ (12)

And the intermediate variable is shown by Equati8n

F(®) = by[au() + B(e”® —yy(1))] (13)

The choice of the forgetting factor in the algamitiis often critical. In theory, it must
be one that converges. On the other hand, ifléss than one the algorithm becomes
more sensitive and the estimated parameter changeldy making the convergence
faster. A more complex solution is to allow it tary with time, lower than one at the
beginning but tending to one.
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Types of Forgetting Factors
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Fig.4. Types of forgetting factors.

Figure 4 illustrates three different types of FleTirst case is obtained by making
A,, and A(t) in Equation 7 equal to one. It is called DecregsBain (DG). In the
second case, the Constant Forgetting Factor (ZEB)is set to a value smaller than
one andi, set to one. Finally, the Variable Forgetting Fagi-F) uses a value of
A, smaller than one and recalculat€s) for each iteration.

Prediction algorithm

The predictions are made using the estimated paeasnén the model. Figure 5
shows experimental data sets from a container pirating bananas. It can be
observed how the air supply is kept constant aftene days. For the prediction
algorithm, u(t) is set to the value of the last sampled input &napire of the
parameter adaptation process. Similarly, the initiadicted output value is set to the
last acquired value of the output. Equation 14 b describes the prediction
algorithm.m s the number of iterations used for the PAA.

Uprea(t) = u(m) (14)

Yprea(m) = y(m) (15)

Yprea(t)= ©" (M) @preq (t-1) (16)

Fprea(t) = by[au(m) + B(e"?ed® —yy, .q(6)] 17)
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Table 1.: Elements of the elements in the algorithm matric

Symbol Arrangement of the elements into the matrice
© [-y(8) - —y(t —ng + 1), ult —1),(e"”®
¢ —yy(©), 5t = 1...5(t—np), e, (8) gn(t —nc + 1) ]
[ ]
T ai..a, ,bia,fb bz/ b, Cq . C
o) [ @ by By, "2y
Pprea(t) [_yp‘red @) - Ypred (t —ng + 1),u(m), (eYYpred(t)
— VYpred (t)):ypred (t—1).. -ypred (t—np)) ]
[ * * b bn ]
0" (m) |ai - g bia, Bby, Z/b1 b/b1J|

Determination of y

Considering the linear dynamic system H as the rimopbrtant contributor to the

temperature profile, an exponential discrete timeaging system like the one pre-
sented in Figure 5 can be described as of the afdene with its unique pole on the
real positive axis. The closer the pole to onehigber the delay of the system.
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Fig. 5.Banana data sets.

The selection ofy is a key factor in the precision of the algorithmi® find a
trustworthy y parameter that characterizes the respiration béabananas. The
presented Feedback-Hammerstein model of linearravde and the FH parameter
adaptation and prediction algorithms are run usgigen experimental data sets. The
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Mean Squared Error (MSE) of the prediction omesamples, equivalent to fifteen
days, is stored for several valuesyand fixed number of training days. If the stored
values of the MSE are plotted, the local minimumesdetermined by the observation
of the MSE vsy curves. In Figure 6, it can be seen that in tiw/a mentioned plot
for five days of training and for the data set 19@al minimum exists for a valueof
0.0587.

1 n
MSE = ~ Z Orear ) = Yprea(©)? (18)

MSE of FH ARX PAA with respect to gamma

Values of y

Fig. 6. Prediction accuracy vs.

Results

Several figures of merit are considered for val@atof the model and algorithms.
The accuracy and the speed of convergence arerafpant importance; however,
guantization and noise robustness are also highdyrable for implementation in a
WSN. Only the linear orders of one and two are itkared to avoid computation of
complex conjugate poles that would characterizdlasons.

To observe the speed of convergence and the agcafdahe predictions with re-
spect to the number of training days, parametémagtbn and a prediction in Matrix
form are done (See Table 1) for a fixed numberaifiing days. SubsequentiyiSE
vs. Training days graphs are plotted. Assuming a quantization le¥€.2°C, a Mat-
lab script was written to assign the nearest vafube quantization grid to the input
and the output datasets. The results of the gredgcusing the quantized datasets are
overlapped with the results of non-quantized.

Similarly, to determine the noise robustness, M8Esus the signal to noise ratio
(SNR) is plotted. Several noise levels of whiteseoivere added to the output of the
data set 1, and the resulting signals were appiedAA and prediction algorithms
with fixed number of training days.
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Psignal
SNR(dB)=10log(“=21) (19)
Table 2. Table 3. Summary of simulation results.
Beétc curacyBeSt Nur;]fber Conver- Quantiza- | Critical | Estimation
. . . gence tion SNR for linear
Forgetting | Linear matrix speed Robustness data
Factor order elements
ARX CFF 2 3 Bad Good 47dB
Bad Good
ARMAX CFF 2 3+n, Bad 43 dB
FH and
WN DG 1 3 Good Good 43dB
model q
FH and Good Ba
MA DG 1 3 +n, Bad 43 dB
model

Simulations were done for two types of data seitst,Rhe experimental data of ba-
nanas were used to include the presence of orgpaic Secondly, the data sets cor-
responding to a cheese experiment, which doesnesept organic heat, were consi-
dered. A summary of all simulation results is présd on Table 2.

FH vs. linear models in the presence of organic hea

From the simulations it is observed in Figures &) 7(b) that if linear methods are
applied to the banana datasets, the accuracy ofrebelts for different sensor
positions of are not sufficient. Quantization raimess is improved with the linear
order of one and the speed of convergence is betiag CFF. Even in the best of
cases acceptable prediction accuracy can only hiewetd after more than five days
of training.

MSE

Order of one and DG

,M

Non-quant
Quantized

Order of one and DG

Non-quantized
Quantized

Order of two and DG

3 4 5

MSE

.

6 7 8
Training Days
Order of one and CFF

9

Non-quant
—— Quantized

Training Days
Order of one and CFF

Training Days
Order of two and CFF

3 4 5

6 7 8
Training Days

@)

9

Training Days

(b)

Training Days

(©)

Fig. 7ARX of order one in the presence of organic heat.
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It is also observed in Figures 7(b) and 7(c) thdtidentification algorithms are the
best to achieve fast convergence speeds. In theasss, less than 3 days of training
is sufficient to achieve good predictions. Howewube plots are made for the data
from three days onwards to avoid the visualizattbthe effects in MSE due to the
set point variations in the reefer supply tempemtuinear system orders of one are
in all cases better than order of two, both ingpeed of convergence and the quanti-
zation robustness. Decreasing Gain must be optoradeserve the accuracy and the
guantization robustness.

Concerning the noise models, results of the sinoriadf Feedback-Hammerstein
with MA process are worse than when modeled asewttise (WN). It affects the
accuracy and the quantization robustness

FH vs. linear models in the absence of organic heat

In the case of cheese data set, the linear metmmsacy results are better than that
of the Feedback-Hammerstein as can be observedgimeF8. Modeling noise as
white gives better quantization robustness thanatiagl it as MA process.

The use of forgetting factors does not have a brigact in the results of ARX
predictions; however, Constant Forgetting Factorslightly better for ARMAX
predictions. Linear orders do not affect the sated predictions, but an order of two
is selected because it can model more accuratéhe ibehavior of the system is not

purely decaying.
Linear ARX of order of one Linear ARX of order of two
1r 1
Non-quantized Non-quantized
Quantized Quantized
w w
0.5- 0 05}
= =
\xx_m_‘v*z'lﬂ“' MM
0 . . . . . . . . . . o . . . . . . . . . )
3 35 4 45 5 55 6 65 7 75 8 3 3 4 45 5 55 6 65 7 75 8
Trainining Days Time (Days)
FH of linear order of one Linear ARMAX of order of two
1r 1
Non-quantized ] Non-quantized
_— Quantized w Quantized
__ >
05/\/_// ?05\
= g —
g R -
0 . . . . . . . . . ) 0 . L . L : : : L . )
3 35 4 45 5 55 6 65 7 75 8 3 8 4 45 5 55 6 65 7 75 8
Trainining Days Time (Days)
(a) (b)

Fig.8. Comparison of FH and linear methods in the absehoeganic heat.

Noise Robustness

The noise was added to validate FH and linear nspddso for both of them the
accuracy is compared with and without the MA modMaximum Signal-to-Noise

Ratio to obtain a good prediction is observed t@itmeind 43 dB for all of them with
the exception of ARX which has a maximum value 6kcibels as shown in Table
2.
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FH ARX Prediction Error vs SNR
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Fig. 9. Noise Robustness for FH method

Prediction improvement

The described approach was originally developecdamn an experiment in 2008
with records for 3 sensors (data set A). Two newadgts with 16 sensors each,
which were recorded in 2009 [9] in two separatetaimers (data set B and C), were
used to cross validate the approach.

FH algorithm of linear order of one was appliedcatbdata sets; neither quantiza-
tion nor forgetting factor is used. For the initdrameter settings, the pole and zero
of the feed-forward linear system was set to 0®@0;p was set to 2.

The previously obtained value pfequal to 0.0587 is used to predict the tempera-
ture inside the containers for many spatial pas#iorhe results are compared to the
predictions for the datasets shown in Figure 5resdmed in Table3. A good average
is observed for the three containers; howeveroimes positions the predictions are
not as accurate as is observed in the Maximum aolum

A second approach is to selgcaccording to the position of the pallets inside th
container. The method to find described previously, is applied to all the nem-
tainer datasets.

It is observed that an improvement in the accurdde predictions can be made
if two different values of are selected: one for pallets close to the dodr-end one
for pallets close to the reefer supply. In Table)3( is resumed the prediction results
if values of 0.0525 and 0.055 are set respectively
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Table 3. MSE prediction results

MSE prediction results for a unique MSE prediction results for values
p q of y according to the position in-
value ofy ; '
side the container
Container/Result | M- Mini- Average Maxi- Mini- Average
mum mum mum mum

Data set A 0.1893 0.0173 0.0778 0.1898 0.0173 0.0778
Data set B 1.4558 0.0550 0.4130 0.476[ 0.0274 0.0946
Data set C 0.8888 0.0101 0.2798 0.574| 0.020] 0.1743

Software bundle implementation and energy consumpan
measurements

In a container scenario, energy consumption tuutgambe the most limiting factor,
and therefore, a priority consideration. Furthemnadhe system should be able to in-
stall the tuned algorithm according to spatial fioss and/or update it according to
the new knowledge obtained from experimental result

The chosen hardware platform is Imote2 [11]. At tbee of it is a PXA271 Intel
processor, integrated with volatile and non-vodatilemory, a power management IC
to go to deep-sleep mode, a transceiver, and ammet Furthermore, it allows stack
ability of additional modules to interconnect adfitl devices, such as, temperature
sensor cards.

Linux operating system is installed, and on it Jaga based OSGi [12] framework
(formerly Open Source Gateway Initiative) to enalglatures such as dynamic soft-
ware updates. OSGi can update and install the fdcsoftware bundles during run-
time without interrupting the execution of the renaker of the system.

For the evaluation of power consumption of the idfothe supply current was
measured over a 1 Ohm resistor in series with theep supply wire, witha test
probe connected in parallel to it. Additional haetes modules were detached one by
one to measure their individual power consumptiorate is programmed to run infi-
nitely with the Feedback-Hammerstein training alfpon and the raid is powered at
the end of each iteration to observe the last deoiotraining. Regarding the predic-
tion algorithm, it is considered that the iMote2 ulb only perform the training
process locally and send the obtained parametersd¢mote server. The server calcu-
lates the model prediction. But because the sehasr only very relaxed energy-
constraints compared to the iMote2, an energy aisaly not required.

The amount ofWork consumed by the algorithms is calculated by eqnéi

W=Pxt (20)

The required CPU time for the algorithm to perfasme parameter adaptation itera-
tion was measured. Measurements showed that eaaktion takes aproximately 5 ms

(C) Springer DOI: 10.1007/978-3-642-19539-6_5



Energy-efficient parameter adaptation and predicéilgorithms for the estimation of tempera-
ture development inside a food container 89

and consumes 0.9 mJ [13]; according to simulatidns,possible to predict the tem-
perature after 3 days with a sampling rate of omér tthat equals to 72 iterations the

equivalent of only 64.8 mJ.

Turn radio off
v
Prediction

v

Turn radio ol

A 4

Fig. 10.Program flow diagram to measure FH training time

Conclusions

A model to represent the factors affecting the terapre inside a refrigerated
container transporting perishable goods was prapdsenodels the effect of organic
heat using a static non-linear feedback systemrefregeration by a linear dynamic
feed-forward system, and the disturbances by stbich@rocesses. This complex
model can provide an accurate description of tltofa involved in the physical
system.

The selected identification method was adapted iSpalty to reduce the
dimensions of the matrices. The non-linear expaakhinction is used instead of a
polynomial to preserve the simplicity of the paré@neadaptation and the prediction
algorithms. The disadvantage of the simplificatisnthat depending on the kind of
fruits to be transported, it is required to tune #igorithm by a correct selection-of
which has to be known in advance. An improvementlxa observed in the accuracy
of the predictions if is set according to the position of the palletida the contain-
er.

Results concludes that the FH identification algpni is efficient when the cargo
emits organic heat. The method of FH of order épsmal to achieve all figures of
merit. It makes accurate predictions only aftee¢hdays of training and maintains
low dimensions of matrices.

However, if the linear method is applied to the d@n datasets, a comparable
accuracy can only be achieved after more than degs of training. Also, results
graphsevidence that when the goods to transport aredfe@ganic heat, such as in
the case of cheese, it is preferable to use arlgystem instead.

Three days of Feedback-Hammerstein training, wisithe minimum to achieve a
good prediction, requires in total 64.8 mJ of eyerg an iMote2 platform using Li-
nux as Operating System and OSGi as software framewhe latter one allows dy-
namic software updates and tuning of the algorittuwording to the spatial position
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of a mote in a container or the installation ofree&r parameter adaptation algorithm
if the cargo does not produce organic heat.
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List of abreviations

ARMAX Auto Regressive Moving Average with External input.
ARX Auto Regresive with External input.
CFF Constant Forgetting Factor

DG Decreasing Gain

FF Forgetting Factor

FH Feedback Hammerstein

MA Moving Average

MISO Multiple-Input and Single-Output
MSE Mean Squared Error

OSGi Open Services Gateway initiative
PAA Parameter Adaptation Algorithm
SISO Single-Input and Single-Output
SNR Signal-to-Noise Ratio

VFF Variable Forgetting Factor

WN White Noise

WSN Wireless Sensor Node
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